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Abstract
Uncertainty is an intrinsic part of any visual representation in visualization, no matter how precise the input data.
Existing research on uncertainty in visualization mainly focuses on depicting data-space uncertainty in a visual
form. Uncertainty is thus often seen as a problem to deal with, in the data, and something to be avoided if possible.
In this paper, we highlight the need for analyzing visual uncertainty in order to design more effective visual repre-
sentations. We study various forms of uncertainty in the visual representation of parallel coordinates and propose
a taxonomy for categorizing them. By building a taxonomy, we aim to identify different sources of uncertainty in
the screen space and relate them to different effects of uncertainty upon the user. We examine the literature on
parallel coordinates and apply our taxonomy to categorize various techniques for reducing uncertainty. In ad-
dition, we consider uncertainty from a different perspective by identifying cases where increasing certain forms
of uncertainty may even be useful, with respect to task, data type and analysis scenario. This work suggests that
uncertainty is a feature that can be both useful and problematic in visualization, and it is beneficial to augment an
information visualization pipeline with a facility for visual uncertainty analysis.

1. Introduction

Uncertainty is a twofold problem in visualization. On one
hand, it is important for visualization to convey uncertainty
in the data to the users, giving rise to the quest for effective
means to measure and visually depict uncertainty [JS03].
On the other hand, the visualization process itself will in-
troduce uncertainty. The former is primarily concerned with
uncertainty in the data space, while the latter has to address
sources of uncertainty in visual mapping, rendering, dis-
playing, viewing, perception, understanding, and reasoning.
While much of the existing work in the visualization litera-
ture focuses on data uncertainty [WPL96, PWL97], discus-
sions on uncertainty stemming from the visualization pro-
cess itself are still limited. In scientific visualization, there
is not always a clear boundary between data uncertainty and
visual uncertainty, since the visualization process often in-
volves the manipulation of geometric primitives (e.g., errors
in isosurface extraction [RLBS03, LPSW96] or in particle
tracing [LB98]). Even when such geometric abstraction is
considered as part of visual uncertainty, it represents only
one specific type of uncertainty caused by the visualization
itself. The aim of this work is to highlight the fact that there
are many other types of uncertainty sources in the visualiza-
tion process.

We adopt a case-based research methodology by focusing

on a specific class of non-spatial data visualization, namely
parallel coordinates visualization, which is a powerful tool
for visualizing and analyzing multi-dimensional data [ID90].
Almost everyone who has used parallel coordinates has seen
the dreaded black screen which is composed of over-plotted
lines and conveys a high level of uncertainty but a very lim-
ited amount of useful information. In practice, many visu-
alizations contain more subtle forms of uncertainty. For ex-
ample, axes with few values create focal points where many
lines meet, but it is uncertain how lines continue to the next
axis; over-plotting of lines that are very close together makes
it impossible to tell exactly how many points are in a partic-
ular location; the inherent resolution of the pixel grid limits
the perceivable resolution of the data; etc. By focusing on a
specific class of visualization, we are able to conduct a de-
tailed analysis of a manageable set of sources and effects
of uncertainty and their relationships. We believe that this
methodology and the major findings of this work can also be
applied to other classes of visual representations.

One of the many complexities in designing a visualiza-
tion system is to properly address the trade-off: how to sat-
isfy perceptual design principles while at the same time
maintaining data fidelity during visual mapping. For large
datasets, striking a balance between information loss and vi-
sual quality presents a considerable challenge. In the cur-
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rent visualization literature, we lack a comprehensive under-
standing of all the different variables and parameters in a
visualization and how they might interact with each other.
A theoretical foundation of visual uncertainty will enable a
better understanding of the interplay between data and visu-
alization properties, to build more effective means for trans-
lating data objects to visual objects [War04].

Our proposed taxonomy (Figure 1) was built from the
bottom up, by considering cases of uncertainty that we ob-
served in real parallel coordinates visualizations (Figures 2–
9). Similar to the conventional way of building a taxonomy,
we organized several classification schemes into a hierar-
chy. When an example case fell into several sub-classes, we
placed it only in the most relevant category to reduce the
complexity of the taxonomy.

Our contributions can be summarized as follows:

• We propose a new taxonomy of visual uncertainty in
the context of line-based and cluster-based parallel co-
ordinates visualization. We identify and classify vari-
ous causes of uncertainty, relate them to the effects and
also identify which stage of the information visualization
pipeline is the source of uncertainty.

• We apply the developed taxonomy to a selection of tech-
niques for improving parallel coordinates visualization
and analyze their relative merits in relation to visual un-
certainty. This demonstrates that the taxonomy can be
used as a qualitative framework to evaluate visualization
techniques in a structured manner.

• We identify cases where certain effects of uncertainty are
useful for data analysis or even need to be introduced in-
tentionally, like in the case of privacy-preserving visual-
ization.

2. Related Work

For conceptualizing visual uncertainty, we provide context
to our work by discussing the existing schemes of uncer-
tainty, particularly those used in visualization.

2.1. Uncertainty in Visualization

There exists a plethora of discussions in the literature on
classifying and categorizing uncertainty, for instance, in sta-
tistical forecasting, risk analysis, philosophy and psychol-
ogy. For a high-level classification of uncertainty in par-
allel coordinates, we take into account the different per-
spectives provided on uncertainty by Milliken [Mil87],
Norvig [RNC∗95]; and Klir and Wierman [KW99]. We also
refer to the typology proposed by Thomson et al. [THM∗05]
for relating to data-space uncertainty. While describing our
taxonomy, we examine some of these classification schemes
in the next section.

Most existing work in visualization relates to data-space

uncertainty (e.g., [PWL97, SLSR09]) and uncertainty in-
volving geometrical primitives, like isosurface rendering.
Our conceptualization of visual uncertainty applies in case
of abstract data where a spatial context is not given [TM04].

2.2. Visual Quality in Parallel Coordinates

Visual quality is a related concept to visual uncertainty. Dif-
ferent visual quality metrics have been proposed for analy-
sis of multi-dimensional data, especially for parallel coordi-
nates [DK11, TA∗09]. Earlier, Bertini and Santucci [BS06]
have argued for a visual optimization principle that guides
the evaluation of different visualizations, facilitated through
visual metrics. While there have been sporadic mentions of
visual metrics in the literature, we lack a systematic ap-
proach to the problem. Bertini et al. [BTK11] point out the
lack of support for meta-visualization, which would help
in verifying and validating a technique and also help visu-
alization designers better understand what works and why.
Although different approaches to measuring visual quality
have been suggested in the literature, the lack of objective
definitions make it a difficult task to categorize the existing
literature. We believe our conceptualization of visual uncer-
tainty will provide an effective way of deconstructing com-
plex visualizations, such as parallel coordinates, by identi-
fying low-level causes of uncertainty and relating them to
high-level concepts of perception and cognition.

3. Visual Uncertainty

Uncertainty is an intuitive term, with a variety of definitions
and ways of measuring it. However, none of them captures
the nature of visual uncertainty, mainly because it is a com-
bination of issues in a mechanical process (the visualization
pipeline), quantization (the pixel grid), and perceptual lim-
itations (low-level vision as well as cognitive abilities and
limitations). We therefore need a more nuanced view of un-
certainty in visualization, which goes beyond a single defi-
nition or metric.

3.1. Physical vs. Perceptual Uncertainty

Two existing schemes of uncertainty are most relevant for
deciding our top-level classification. One such categoriza-
tion is to consider uncertainty in physical systems (physical
uncertainty) and that in the human mind (perceptual uncer-
tainty) separately. For example, in behavioral sciences and
neuroscience, there is an assumption that the nervous sys-
tem performs its own probabilistic estimation about events
in an environment, resulting in perceived certainty or uncer-
tainty. Such results usually differ from those obtained from
measurement of the events in the environment. This is par-
tially true in case of mixed-initiative visualization systems
as the data is first processed in physical systems, on the ma-
chine side, after which the human side takes over. On the
human side, we have to take perception into account as well;
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Figure 1: The proposed taxonomy of visual uncertainty in parallel coordinates. The shaded area indicates the level at which it
maps to the stages in typical visualization pipelines.

uncertainty due to perception has been discussed by Russell
and Norvig [RNC∗95]. Holzhüter et al. [HLS∗12] describe
uncertainty in visualization and differentiate between input
and output uncertainty. Relating the information visualiza-
tion pipeline to the communication channel as discussed be-
low, we choose encoding and decoding uncertainty to be the
topmost classifying schemes.

3.2. The Communication Model of Uncertainty

Shannon defined information as a measure of the decrease
of uncertainty for the receiver of a message [Sha48]. If vi-
sualization is viewed as a communication channel from the
data space to the perceptual and cognitive mental space of
the user [PAJKW08], it is important to trace the uncertainty
along different stages of the pipeline, so that the information
communicated to the user can be optimized. Communica-
tion of information is not the end-all in visualization, as a
significant amount of transformation takes place in the men-
tal space of the user. We believe, however, that visual com-
munication is as important as the transformation that fol-
lows it. Like a communication channel, visualization is also
associated with the encoding and decoding of information.
We define visual uncertainty as the uncertainty that is asso-
ciated with a visualization during encoding (in the screen-
space) and decoding of information (in the mental space of
the user).

3.3. Taxonomy Overview

Our taxonomy (Figure 1) separates the causes of uncertainty
into two main groups: encoding (Section 4) and decoding
(Section 5). The typical way of looking at uncertainty is from
a decoding perspective, which includes our perceptual and
cognitive processes when working with a visualization. Un-
certainty is also introduced on the encoding side, however,
through transformations of the data, mapping to the pixel
grid, or selections of data and axes.

Uncertainty is usually the result of a number of causes,
but we have attempted to narrow down the main reasons for
uncertainty in specific cases. Most real-world scenarios will
consist of combinations of these cases, and even within the
taxonomy there is some overlap between some of the higher
levels and the specific examples. As a working definition, we
adopt the definition of Douglas Hubbard [Hub10], which de-
scribes uncertainty as the lack of certainty, a state of having
limited knowledge where it is impossible to exactly describe
existing state or future outcome, more than one possible out-
come.

The third level of the taxonomy coincides with the stages
found in visualization pipeline models like Chi’s [Chi00]:
data mapping and visual mapping. We add two stages on the
human side of the pipeline, perception and cognition; while
they are not very clearly delineated, we find them useful to
structure the lowest level of the taxonomy.

4. Encoding Uncertainty

As data moves through the visualization pipeline, it gets
transformed and mapped to visual coordinates and shapes.
The encoding side of our taxonomy includes all the stages
from data access to rendering the visualization on screen.
Data acquisition and any uncertainty inherent in it is outside
the scope of this work.

4.1. Data Mapping

In the first stage of the visualization pipeline, the user se-
lects the data points and dimensions that are to be mapped
onto the screen. In addition to the selection of the dimen-
sions, their ordering is also determined, which is important
for the patterns that will be visible once the visualization is
drawn onto the screen. In contrast to data-space uncertainty,
this process is entirely driven by the user, who picks which
elements to show (usually in response to what is currently
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Figure 2: Completeness: Choosing not to include an entire
axis (a) or single values (b) prevents the user from seeing
some of the data, causing uncertainty about it.

shown on the screen). This process seems benign and simple,
but there are many possible configurations, many of which
hide potentially interesting parts of the data.

Completeness: While parallel coordinates can show many
dimensions at once, many high-dimensional datasets are still
impractical to show all at once, or the user may choose to
show a smaller number to gain more space per dimension.
By leaving out dimensions, potentially interesting structures
are not shown on screen, causing uncertainty about the com-
plete set of patterns in the data (Figure 2a). It is also possible
to filter the data on a dimension that is not part of the visu-
alization (Figure 2b). The most common case for doing this
is when there is a time dimension in the data, in which case
the visualization shows the data for only one particular time
step. When not all records are shown, patterns can be hidden
that would be apparent if all the data was there, resulting in
further uncertainty.

Configuration: Even if all the axes are shown, their order
is crucial to see patterns: most patterns are only visible be-
tween directly adjacent axes. Not only is it typically not fea-
sible to try out all possible axis orderings, it is also uncom-
mon to show the same axes several times in the same visu-
alization [Weg90]. The wrong choice of axis ordering can
thus hide important patterns without the user being able to
find out what he or she is missing, leading to uncertainty
(Figure 3a). A common interaction in parallel coordinates is
the exclusion of outliers on an axis, typically to give the re-
maining data more space (Figure 3b). In contrast to the com-
pleteness case above, the missing data is chosen by visual
criteria, and is typically still shown on the other dimensions
(and as a line that is leaving the screen). The exact values of
those outliers are lost, however.

4.2. Visual Mapping

When the data is drawn onto the screen in the visual map-
ping and rendering stage (which we treat as one step), its
uncertainty increases due to the limited resolution of the
pixel grid. The application of information theoretic metrics
in quantifying the screen-space artifacts has been discussed

a) b)
case%2%case%1%

ac ac

a# b# c#

exclude'outlier'

Figure 3: Configuration: a) Patterns can be missed when
not all possible pairs of axes are represented; b) leaving out
individual data values prevents the user from seeing parts of
the data;.

by Chen and Jänicke [CJ10]. In parallel coordinates, a vari-
ety of artifacts are produced both on the axes and between
them. While these also cause issues on the perception side
of the taxonomy, there are really two separate phenomena at
play here that need to be distinguished. The visual mapping
side is also easier to assess due to its mechanical nature than
the much more complex perception side.

Precision: The limited number of pixels on a display causes
the locations of the data points to be quantized into a rela-
tively small number of distinct values. In most real datasets,
many data points end up getting mapped to the same pixel
locations, and thus can no longer be differentiated. The in-
formation lost at this stage leads to uncertainty about the pre-
cise values of the data points (Figure 4a). When transparency
is used, the colors of lines also mix, making it difficult to
tell how many and which values are present. This is espe-
cially true when color is also used, such as for a gradient on
one axis to more easily spot correlations. Even given per-
fect color perception, it is impossible to decode the resulting
colors due to the limited resolution of the color values rep-
resented on the screen, and the resulting quantization of the
colors (Figure 4b).

Granularity: Clustering naturally introduces uncertainty
into the data, by reducing the number of values and rep-
resenting them only as cluster boundaries or centroids and
sizes. We are interested in the visual appearance of clusters
between axes when they can be shown as polygons [NH06,
DK11]. Just as in data space, the visual clusters hide the in-
dividual lines, thus removing information about the distribu-
tion of lines within the cluster, and even the number of lines
in each cluster (Figure 5a). A similar issue occurs on the
axes, where the locations of the points are no longer known,
even when the cluster boundaries are defined by the max-
imum and minimum axial values of points in cluster (Fig-
ure 5b). In that case, it is not known whether the corners
defining the cluster belong to the same data point or to dif-
ferent ones; several combinations are possible that are all
equally likely (one line can run along the boundary or the
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Figure 4: Precision: a) Pixel binning leads to a loss in pre-
cision, which makes it impossible to read values precisely;
b) the colors of lines drawn over each other make it diffi-
cult to see brushing and the precise number of lines (when
transparency is used).
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Figure 5: Granularity: a) Clustering of values hides infor-
mation about the internal structure of the cluster and po-
tentially the number of items in each cluster; b) the same is
true for the internal structure of the cluster and the actual
locations of the original data points.

boundary can consist of two distinct data points, for both
boundaries independently).

5. Decoding Uncertainty

Once the information is encoded and the visualization ren-
dered to the screen, the perceptual and cognitive processes of
the user take over in interpreting that information. Decoding
uncertainty occurs in the perception and cognition stages of
our pipeline. We consider a source of uncertainty to be in the
decoding branch only if the information concerned is fully
encoded in the visualization. Without the information having
been encoded first, it cannot be decoded, thus we give prior-
ity to the encoding stage. Analysis of decoding uncertainty
enables us to evaluate a visualization technique by asking
questions such as: is it perceptually confusing, does it incur
a high level of cognitive load for reasoning, or is it only suit-
able for expert users who know how to interpret the visual
representation?

5.1. Perception

In this section, we consider visual uncertainty resulting from
the limits of the human vision system. Higher-level pro-

cesses such as knowledge and the ability to perceive and
recognize patterns are discussed in Section 5.2 on cognition.

Spatial Accuracy: The lack of knowledge about the exact
spatial location of terminators (such as where records within
a cluster are located or where the attributes are on an axis) or
other geometric features (such as where two lines cross each
other) causes uncertainty about the precise data represented.
Perceptual accuracy concerns whether the user can differen-
tiate visual objects from available information such as lo-
cations and colors. Sometimes, although the information is
theoretically there on the screen, it can still be perceptually
very difficult to perceive such information due to either the
discriminative limit of the human vision system or percep-
tual illusion. This issue is different from (though related to)
the missing information or lack of precision as discussed in
Section 4.2. In the latter case uncertainty was theoretically
there at the end of visual encoding, while former was caused
by the human vision system.

Traceability: When there are many lines between adjacent
axes, it becomes difficult to see individual ones in the result-
ing clutter. This is particularly problematic when most of
the lines are almost parallel, but the ones that differ (which
are often of particular interest) are hidden among or behind
them (Figure 6a). Even if lines differ in the pixels at their end
points, small angles between lines can cause confusion when
looking at the space between axes. When lines converge onto
the same pixel (or pixels that are very close together), it can
become impossible to tell which line continues in which di-
rection after that point (Figure 6b). While this can be a preci-
sion issue when the values are actually different, it becomes
a pure traceability problem when the underlying data values
are identical, and thus would never be mapped onto different
pixels, no matter the resolution of the display. This is a com-
mon problem when categorical data is present in datasets
visualized using parallel coordinates. A similar issue exists
also for clusters, whose structure can be confusing due to
splits and overlaps on and near axes (Figure 6c).

The common solution to the problem is interaction, which
allows the user to highlight a particular record or cluster, but
this is not always practical and certainly does not provide
as much information as directly showing it. Users are also
not always aware of traceability issues and simply fail to see
subtle patterns or outliers.

Identity: Identity uncertainty is usually caused by many
lines or clusters crossing, sometimes at low angles, making
it difficult to uniquely identify a line or cluster [HHE08]. A
single line can easily be hidden behind many other lines that
form a solid, or almost solid, structure (Figure 7a). This case
is distinct from the traceability case because it may not be
apparent on the axes that the line is even there; a line that
is not known to be there cannot be traced by the user. Only
hints between the axes can show that this data value even
exists. Overlapping clusters create similar issues, with the
additional problem that they can make the user assume the
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Figure 6: Traceability: a) Single lines are easily hidden among others, leading to uncertainty about the exact number of lines
and fine details in the data; b) lines meeting in single points, or in very small neighborhoods, on axes cause ambiguity about
the multi-dimensional nature of the data; c) clusters show similar issues and are difficult to trace across multiple dimensions.

existence of clusters that are not actually there. The lines cre-
ated by overlaps can be misinterpreted as distinct clusters,
and even when not it is often impossible to tell how many
clusters there are (Figure 7b). A related issue making it dif-
ficult to tell how many (and which) clusters exist is when
colors of cluster mix. Does the mixed color present a dis-
tinct cluster of that color or the overlap between two clusters
of other colors (Figure 7c)?

5.2. Cognition

Cognitive uncertainty is caused by difficulties in cognitive
reasoning, such as confusion and misinterpretation. Mil-
liken [Mil87] classifies cognitive uncertainty into state un-
certainty, effect uncertainty and response uncertainty. In
data analysis, for example, state uncertainty may describe
the lack of certainty about the data and information given.
In the visualization context we term this category lack of
knowledge. Effect uncertainty may describe the lack of cer-
tainty about what the information implies; response uncer-
tainty may describe the lack of certainty about what action
one should take (the latter two are outside the scope of this
taxonomy).

Lack of Knowledge: Parallel coordinates require knowl-
edge and experience to use for effective data analysis. Users
who are unfamiliar with the way the technique depicts cer-
tain patterns may be unable to tell which pattern they are
actually looking at (Figure 8a). Even when they are famil-
iar with the technique, inconsistent axis scaling can mislead
users. Parallel coordinates often scale every axis indepen-
dently to make the most use of space, thus making direct
comparison between them impossible, and shifting the loca-
tions of the zero on each axis. Patterns can be misinterpreted
because of this (Figure 8b).

Pattern Complexity: Highly complex patterns in the visu-
alization can lead to misinterpretations, even when they are
correctly represented and readable on the perceptual level.
While simple correlations, aggregation of values, etc., are
easy to see, the superposition of different patterns can lead
the user to see one pattern but ignore the other (Figure 9).

6. Discussion

In this section we analyze the existing research on parallel
coordinates with respect to the taxonomy. Work on parallel
coordinates has focused on two categories of work: qualita-
tive tasks (clutter reduction, improving visual quality) and
common analytical tasks (clustering, finding correlations,
detecting outliers, privacy preservation). These tasks are
based on the low-level analytical activities of a user [AES04]
that are supported by parallel coordinates [AA01]. For the
different uncertainty sources we analyze how these uncer-
tainty sources reduce/enhance certain effects that are useful
in some analysis scenarios. The discussions relating analyti-
cal tasks to visual uncertainty are summarized in Table 1 and
described in detail in the following section.

6.1. Clutter

There are different definitions of clutter in the parallel co-
ordinates literature. Peng et al. [PWR04] define clutter as
the relative number of outliers to the total number of data
points and aim to have a configuration which optimized with
respect to outliers. The authors use reordering technique to
achieve that configuration. This technique addresses the un-
certainty due to configuration of the visualization: while this
type of uncertainty is reduced on one hand due to preserving
outliers, particular selection and ordering of axis increases
the same effect of uncertainty due to possible omission of
salient patterns.

Identity: Some clutter reduction techniques aim to reduce
the number of visual elements, at the visual mapping stage.
In parallel coordinates, that means reducing or manipulat-
ing number of lines that connect the data points. Sampling
Lens [EBD05] is one such example where the data to be
mapped on to the screen is abstracted based on density of the
data points. Artero et al. [AdOL04] reduced non-important
information in parallel coordinates based on the computed
frequency and density plots from the original datasets. The
screen space quality method [JC08] reduces clutter, while
preserves the significant features in the original datasets at
the same time, by filtering out data items based on distance
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Figure 7: Identity: a) Color mixing leading to confusion among identity of lines; b) overlapping clusters leading to clutter; c)
color mixing among clusters lead to confusion among clusters

transformation for data abstraction. These methods while re-
ducing identity uncertainty, lead to lack of completeness in
the visual representation.

Traceability: Another definition of clutter is according to
Ellis and Dix [ED06], where clutter is attributed to large
number of crossings and lines crossing at low angles In line-
based parallel coordinates, clutter is caused by too many line
crossings, several lines crossing at low angles and lots of
lines converging or diverging from a small region on the
axis. This relates to the uncertainty due to traceability be-
tween adjacent axes and across different axes, and also iden-
tity uncertainty on the axis. While in Pargnostics [DK10] the
authors aim to retain data fidelity and reduce clutter through
reordering-based optimization, in the previous case the au-
thors reduce the number of visual elements, thereby leading
to a completeness problem.

6.2. Clustering

Existing research on improving visual quality in parallel co-
ordinates focuses on clustering [ZYQ∗08, FWR99] in vari-
ous forms.

Configuration: In both line-based and cluster-based paral-

a) b)
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Figure 8: Lack of Knowledge: a) Not knowing how to
read the sometimes complex patterns in parallel coordinates
leads to uncertainty about the represented pattern; b) incon-
sistent axis scaling, in particular because of the different lo-
cations of the zero, can lead to issues in interpretation.

lel coordinates, binning helps in having pre-defined seeds
for clustering. Binning can be either data-based or pixel-
based. Pixel-based binning [NH06] helps in overcoming the
problem due to high cardinality of a data-space, but leads
to over-plotting. Cui et al. [CWRY06] have proposed met-
rics that measure the data quality. Pixel-binning therefore re-
duces configuration uncertainty. However, binning also leads
to loss of precision and granularity uncertainty as many lines
can end up on a single bin.

Low crossing angles help in the perception of proximity
and similarity by inducing a Gestalt effect. For small num-
ber of data points, lines crossing at small angles generally
mean lines are more or less parallel to each other, which indi-
cates implicit clusters. In case of large number of data points,
many lines crossing at low angles would tend to produce
clutter. Clustering techniques in parallel coordinates aim to
reduce the uncertainty related to data similarity and proxim-
ity and support analytical tasks of finding clusters within the
data [AdOL04, AA04]. Information loss is intended in these
cases. However uncertainty can be introduced due to lack
of granularity information. The techniques do not generally
convey the number of records within a cluster.

Identity and Traceability: Zhou et al. [ZYQ∗08] proposed
geometry-based visual clustering to implicitly enhance the
clustering in parallel coordinates by bundling the edges, and
minimizing the edge curvatures and maximizing the paral-

simple'

complex'

Figure 9: Pattern Complexity: More complex patterns in
the visualization lead to more difficulty in reading and un-
derstanding the underlying data patterns.
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Task Data Cardinality Data Dimensionality Source Intended Effect Unintended Effect Utility

Finding Correlations
Large Large crossings - Pattern Complexity + Identity Inverse correlation

Large Axis selection - Pattern Complexity + Configuration Correlation between dimensions
Detecting Outlier Large Axis scaling - Pattern Complexity + Loss of precision Spotting anomalies in trend

Clustering
Large Binning - Configuration +Precision Seeds for clustering
Small Low crossing angles - Pattern Complexity + Identity, Traceability Clustering due to proximity, similarity

Large Axis selection - Pattern Complexity + Configuration Subspace clusters

Privacy-preservation
Any Binning + Identity N/A Loss of precision and granularity

Overlaps on the axis + Identity +Pattern Complexity Uncertainty in identifying individual values
Cluster splits + Traceability +Pattern Complexity Uncertainty for traceability of sensitive clusters

Table 1: Connecting sources and effects of uncertainty to tasks and data properties (cardinality and dimensions). The positive
sign indicates a particular effect of uncertainty is enhanced and negative sign implies the same is reduced. Usually, the intended
effect is the reduction of a certain cause of uncertainty. In case of privacy, since increase of uncertainty is intentional, we
consider the effect as being useful.

lelism of adjacent edges at the same time. Other than re-
ducing clutter, they also achieve reduction of uncertainty
through enhancing the perception of continuity by choos-
ing curved edges instead of lines as the basic visual ele-
ments. This reduces traceability uncertainty by violating the
gestalt law of continuity among visual structures. Further,
clusters can be detected by superimposing semitransparent
line segments on the screen to enhance important compo-
nents [ZCQ∗09] and thereby reducing identity uncertainty.

Wegman and Luo [WL97] also use transparency to iden-
tify regions of high over-plotting through their dense color.
Holten et al. [HVW10] have shown through user studies that
improvements in visual enhancements do not always work
well in practice. They have further argued for more formal
evaluation measures for these techniques and we believe our
definitions of visual uncertainty will help future approaches
towards achieving a more quantitative basis for comparison.

6.3. Finding Correlations and Detecting Outliers

Line crossings, although lead to clutter in most cases, can be
helpful in the case of a small number of data points, when
large number of crossings at high angles is a useful repre-
sentation for inverse correlations [DK10]. This enables the
cognition of linear correlation, and thus reduces pattern com-
plexity. For detecting outliers, normalization of the axes us-
ing non-linear scaling can be applied [AA01]. While this
helps in reducing pattern complexity, there is significant loss
in precision for the represented data.

6.4. Useful Uncertainty: Privacy

In case of privacy-preserving applications, contrary to the
other categories mentioned above, certain effects of uncer-
tainty are intentionally increased. For ensuring privacy data
needs to be hidden, and in an interactive environment, there
needs to be sufficient uncertainty to confuse the user so that
he is not able to breach the intended privacy of the appli-
cation. The uncertainty should, however be focused on the
left part of the taxonomy tree, i.e, encoding uncertainty as
increasing decoding uncertainty would degrade utility of the
visualization to a much larger extent. Recently, we proposed
a technique for privacy-preserving visualization [DK11],

which exploits and manages the existing information loss in
parallel coordinates to hide sensitive information.

Precision and Granularity: Loss of precision and granu-
larity or lack of completeness are all related to information
loss in visualization. While there has been sporadic men-
tion of quantifying information loss [PAJKW08, ZK10], we
still lack a framework for describing it. In privacy-preserving
visualization, a clustering technique based on screen-space
metrics is used to set a lower bound on the number of records
per cluster. By using pixel-based binning as a staring point
of the clustering process, it exploits the inherent loss of pre-
cision to mask the real values of the records. Uncertainty is
also increased by the unknown location of the records within
the clusters as shown in Figure 5 leading to granularity un-
certainty. Thus, encoding uncertainty here is caused by both
loss of precision and granularity.

Identity and Traceability: Cluster overlaps on the axis
make it difficult for an attacker to point to individual data
values due to identity and traceability uncertainty. Cluster
splits as shown in Figure 10 add traceability uncertainty
across the axes. These are all useful uncertainty from a
privacy-preserving perspective. To optimize the utility, we
should try to minimize cognitive uncertainty due to pat-
tern complexity and also reduce identity uncertainty for axes
which are less sensitive (for example, quasi-identifiers) than
others (for example, sensitive attributes).

7. Uses of Visual Uncertainty Taxonomy

In the last section we categorized the existing literature on
parallel coordinates based on our taxonomy of visual uncer-
tainty. In this section we summarize our findings and provide
some guidelines for the use of our taxonomy.

Relating Tasks to Effects of Uncertainty. As shown in Ta-
ble 1 for the different tasks there are intended and unintended
effects of uncertainty. Certain visual artifacts that are be-
lieved to increase visual uncertainty, like line crossings caus-
ing problems due to identity and traceability, can also help in
identifying inverse correlations [DK10]. These cases needs
to be identified when designing a visualization.

Design Choices. The design choices for encoding informa-

c© 2012 The Author(s)
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Figure 10: Privacy-preserving parallel coordinates are an
example for the usefulness of controlled uncertainty [DK11].

tion have to be informed by the trade-offs between the dif-
ferent effects of uncertainty. For example, in parallel coordi-
nates, clusters can be either represented by closely bundled
polylines or by solid polygons. While the granularity infor-
mation is available in the first case, it is absent in the second.
For the specific task that a user wants to perform, we have
to apply the appropriate visual representation. In the privacy
case, since granularity information is something we want to
hide, polygonal clusters would be the design choice.

Framework for Systematically Defining Metrics: Bertini
et al. [BTK11] have pointed out the subjectivity in the choice
of quality metrics in general. With the taxonomy shown in
Figure 1, one can systematically design metrics to measure
different types of uncertainty, for example, along the line of
leaf nodes in Figure 1. We can qualitatively evaluate a metric
based on what it measures and what it does not measure,
and also identify aspects of uncertainty where no metric has
been proposed. We can also combine metrics by following
the tree from leaf nodes to the root. The direction of research
involving use of metrics needs to be pursued further, so that
analysts’ trust in visualizations [BTK11] can be established
more effectively.

View Optimization. In previous work [DK10] we showed
the benefits of optimizing parallel coordinates by using
screen space metrics. Similarly analysis of the causes and
effects of visual uncertainty can inform the preceding stages
of visualization and help refine the output. While the data-
space uncertainty factors can be studied using the framework
proposed by Correa et. al. [CCM09], our model will serve as
a feedback loop (Figure 11), that is absent in the current lin-
ear structure of the visualization pipeline model.

Interaction Design. Certain types of visual uncertainty, like
the one involving configuration can be reduced by interac-
tion techniques. For example, reordering reduces configura-
tion uncertainty, brushing reduces identity uncertainty; cer-
tain axis selections during the clustering task can enable one
to visualize subspace clusters. We believe our taxonomy can
be used to as a bridge between human factors and visual in-
formation in the context of interaction design (Figure 11).

Uncertainty 
Sources

 Visualization 
Pipeline

Data Information

 Uncertainty 
Analysis

   Visual  
Uncertainty

 Interaction 
Design

Figure 11: While the traditional visualization pipeline has
a linear structure, analysis of visual uncertainty provides a
feedback loop for iterative refinement of the visual represen-
tation and the associated interaction techniques.

8. Conclusions and Future Work

In this paper we have introduced the concept of visual un-
certainty and proposed a taxonomy according to existing
concepts in the uncertainty literature. Our work can be ex-
tended for further theoretical research on building a taxon-
omy for uncertainty in different types of visualization tech-
niques, besides parallel coordinates. We believe such a tax-
onomy for visual uncertainty can serve as a foundation for
future techniques to be developed that takes into account the
issues related to uncertainty and develops means to address
them in terms of visual design. We have also illustrated the
application of uncertainty in privacy-preserving data analy-
sis scenarios, where we intentionally hide information from
the user and uncertainty thus becomes a desirable artifact.
Based on our existing taxonomy we want to build a com-
plete model of screen-space uncertainty in visualization, and
develop metrics that quantify it. This will be useful to either
reduce uncertainty if desired or precisely control it for pur-
poses such as privacy-preserving information visualization.
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