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Abstract

In previous work, we proposed a technique for preserving the privacy of quasi-identifiers in sensitive data when
visualized using parallel coordinates. This paper builds on that work by introducing a number of metrics that can
be used to assess both the level of privacy and the amount of utility that can be gained from the resulting visu-
alizations. We also generalize our approach beyond parallel coordinates to scatter plots and other visualization
techniques.
Privacy preservation generally entails a trade-off between privacy and utility: the more the data is protected,
the less useful the visualization. Using a visually-oriented approach, we can provide a higher amount of utility
than directly applying data anonymization techniques used in data mining. To demonstrate this, we use the visual
uncertainty framework for systematically defining metrics based on cluster artifacts and information theoretic
principles. In a case study, we demonstrate the effectiveness of our technique as compared to standard data-based
clustering in the context of privacy-preserving visualization.

1. Introduction

In visualization, one of the main challenges is to maximize
data fidelity during the mapping between data space and the
screen space of limited number of pixels. While visualizing
sensitive data, however, the goal is to intentionally hide some
information to prevent unauthorized disclosure. Since visu-
alization entails inherent information loss and other types
of uncertainty in the screen space, those can be exploited
for privacy-preserving purposes. We recently introduced a
technique for privacy-preserving data visualization (PPDV)
using parallel coordinates [DK11], which is based on ideas
from privacy-preserving data mining (PPDM). In contrast to
the data-based approach to preserving privacy, a visual ap-
proach takes the properties of a visualization into account
while manipulating the visual structures. A visualization
model for privacy-preservation thus has to be treated differ-
ently from a data-based model for the same, and evaluation
of PPDV techniques has to be based on the visual represen-
tation.

There are few established metrics for assessing the utility
of information visualization techniques. Several researchers

have argued for the need of measuring visual representa-
tions, as they form the interface between the data and the hu-
man mind [FLC∗02]. In recent times, visual quality metrics
for various techniques have been proposed for measuring ef-
fectiveness of representations. However, ambiguity in defi-
nition of these metrics and a lack of systematic comparison
with respect to their usefulness make it difficult for visual-
ization designers to objectively define metrics for assessing
visualizations [BTK11].

While user studies are an accepted way of measuring the
usefulness of visualization, they often do not provide clear
insights into why some techniques work better, and do not
generally allow the construction of optimization algorithms.
In particular in the case of privacy, there are not only visual
and utility criteria, but also the privacy aspects of the visual-
ization that need to be taken into account. Although the latter
can be validated in user interaction scenarios using studies,
the issues of privacy and utility cannot be considered in iso-
lation. To do this, we need to quantify the level of privacy
that can be achieved by a particular visual representation and
then assess the loss in utility those cause.
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Figure 1: Pixel-based binning and clustering in paral-
lel coordinates and scatter plots. Illustrating ways for 2-
anonymizing the four data points in a pixel grid. For very
large number of points, estimation of privacy requires met-
rics.

We use the model and taxonomy of visual uncertainty we
introduced recently [DCK12] to select relevant metrics to
define. This model is based on the uncertainty produced by
the visualization process itself, rather than inherent in the
data. By deconstructing a visualization into its smallest com-
ponents, i.e., the visual structures, we are able to control the
screen-space information. We address both types of uncer-
tainty: encoding uncertainty that is concerned with the visual
mapping process and decoding uncertainty that describes the
perception and cognition of visual structures from a user’s
perspective. We propose a set of metrics that can help us
quantify the different types of uncertainty and satisfy the re-
quirements of a privacy-preserving model. The contributions
of our work can be summarized as follows:

1. Identify causes and sources of visual uncertainty in a
class of multivariate techniques that can be used for
privacy-preservation of sensitive data.

2. Develop a set of metrics that quantify privacy and utility
in term of encoding and decoding uncertainty.

3. Application of the metrics for comparison of data-based
and visual approaches to privacy-preserving visualiza-
tion.

2. Related Work

Since privacy preservation in the realm of information visu-
alization is a relatively new concept, we discuss the relevant
background in the area of data mining and provide context
for the rest of the paper.

2.1. Criteria for Privacy

Among the different methods proposed in privacy-
preserving data mining [AS00], we focus on the k-
anonymity and l-diversity criteria for preserving privacy.
The k-anonymity model [Swe02] is used extensively to pre-
vent privacy breach by linking attributes that co-occur in pri-
vate and public databases (known as quasi-identifiers) to ex-
ternally available information. k-anonymity ensures records

(a) Visual clustering in parallel coordinates.

(b) Visual clustering in scatter plots.

Figure 2: Privacy-preserving clustering in parallel coor-
dinates and scatter plots for k=3 in case of the Diabetes
dataset.

are aggregated in groups of k members so that they are indis-
tinguishable with respect to the quasi-identifiers. This does
not guard against the homogeneity attack due to the lack
of diversity in sensitive attributes: if a quasi-identifer group
only points to a single sensitive attribute, an attacker can
breach privacy. To prevent this, Machanavajjhala et al. pro-
posed l-diversity [MKGV07] which ensures each quasi-
identifier group points to at least l different values for the
sensitive attribute. In our previous work [DK11], we imple-
mented a privacy-preserving visualization technique based
on these two criteria, that is adaptive to user interactions.
Here we not only evaluate the k-anonymity based privacy
model with respect to different metrics, but also demonstrate
that k-anonymity is not sufficient to guarantee privacy in
the screen-space and therefore the metrics are necessary for
quantifying the levels of privacy and utility.

2.2. Privacy and Utility With Respect to Visual
Uncertainty

While the trade-off between privacy and utility is very much
an open research area in PPDM, several metrics have been
proposed to quantify privacy and utility individually. A com-
prehensive survey have been done by Bertino et al. [BLJ08]
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where the different metrics have been categorized and de-
scribed. Entropy as a privacy metric was first proposed by
Aggrawal et al. [AA01] and was developed further by oth-
ers [BFP05, Bez08]. Utility has been measured in terms of
data quality and clustering quality and also with respect to
preservation of patterns with respect to specific data mining
techniques. In our work, although we do not directly apply
any of these metrics, we adopt some of the approaches for
privacy-preservation in the screen-space. For example, we
use entropy to measure the effect of overlaps and also clus-
tering quality with respect to the centroids of the polygons.
Most importantly, we systematically define metrics accord-
ing to the visual uncertainty taxonomy that we had proposed
in our previous work.

Uncertainty in the screen-space, or visual uncer-
tainty [DCK12] is a new perspective to deal with the
uncertainty problem in visualization. So far, most exist-
ing work in visualization relates to data-space uncertainty
(e.g., [PWL97, Joh04]) and uncertainty involving geomet-
rical primitives, like isosurface rendering [RLBS03]. The
conceptualization of visual uncertainty takes communica-
tion of information into account and looks at both the en-
coding and decoding aspects of uncertainty on screen. The
latter is similar in principle to the idea of uncertainty due to
perception [RNC∗95] and to the differentiation between in-
put and output uncertainty [HLS∗12]. Study of the sources
and causes of uncertainty enables the visualization designers
to analyze and refine the visualization output for effective
privacy-preservation in an interactive environment.

2.3. Information-Theoretic Measures

Several authors have advocated the use of information-
theoretic measures to quantify the information-content of
a visualization. Purchase et al. argue about conceptualiz-
ing the visualization pipeline as a lossy information chan-
nel and mentions that information-theoretic measures can
be used to measure the loss [PAJKW08]. Rundensteiner et
al. propose some measures of data quality and abstraction
quality to make the connection between data and the screen
spaces [RWX∗07]. Yang-Peláez and Flowers have demon-
strated how information content in visualization can be
quantified without taking semantics into account [YPF00].
More recently, Chen and Jänicke have shown how different
information-theoretic concepts like entropy and mutual in-
formation can be used at different stages of the visualization
pipeline [CJ10]. We demonstrate the use of some of those
metrics for quantification of privacy and different constraints
that guide the interaction.

3. Conceptualizing Privacy-Preserving Visualization

The goal of a privacy model in visualization is to protect the
sensitive values of individual records, so that with or without
interaction, a user without appropriate access rights is not

able to read data at a precision that is higher than allowed
by the data owner. For this, we need to transform the records
in the data space to an anonymized form which masks their
real values, yet preserves the overall patterns. Based on the
visual variables [CM97] being used, values can be masked
based on color (pixel-oriented techniques), shape (glyphs),
position (scatter plots, parallel coordinates, line charts, etc.).

At the core of the k-anonymity privacy model is the in-
distinguishability of k data items with respect to each other.
In screen space, data is represented by visual variables.
Anonymity in the data space means hiding the values, but
the same in the screen space can be achieved through manip-
ulation of these different visual variables. Depending on the
key component of a visual representation, appropriate visual
variables are manipulated to achieve anonymity. In previous
work, we have proposed privacy-preserving parallel coor-
dinates. By the line-point duality principle [ID90], lines in
parallel coordinates have a one-to-one mapping with points
in scatter plots. Exploiting this mapping, we extended the
privacy-preserving model to be applied to scatter plots. The
only change is in the cluster shapes, quadrilaterals or trian-
gles in case of parallel coordinates, while rectangles/squares
or lines in case of scatter plots. The concepts that we dis-
cuss in this paper are applicable directly to both scatter plots
and parallel coordinates and can be generalized for other
position-based visual representations like line charts.

3.1. Pixel Binning

In case of position-based representations like scatter plots
and parallel coordinates binning is based on pixel coordi-
nates (Figure 1). In case of other representations like glyphs,
binning can be based on shape, color, etc. Let D be a tabular
dataset, which has nr m-dimensional records: R1,R2, . . . ,Rnr

where Ri = 〈xi,1,xi,2, . . . ,xi,m〉. Let each axis be of h pix-
els high, and S be the set of valid pixel coordinates, i.e.,
S = {0,1, . . . ,h− 1}. Let X j, j = 1,2, . . . ,m denote the set
of all values on the jth axis, i.e., X j = {x1, j,x2, j, . . . ,xnr , j}.
Each data value xi, j is thus projected onto a screen pixel co-
ordinate on the jth axis by f j : X j→ S.

3.2. Clustering

Since the minimum number of original records per clus-
ter for all clusters is guaranteed to be at least k, this
privacy-preservation principle is referred to as k-anonymity.
We use the k-members algorithm proposed by Byun et.
al. [BKBL07] to cluster records in screen-space. Clustering
can be done in two ways: Data-based clustering: clustering
multiple dimensions at a time, using data-space properties
and Visual clustering: axis-pairwise clustering using screen-
space metrics. In our previous work [DK11] we have estab-
lished the benefits of visual clustering, as it preserves the
structures in the screen space and the user can understand
the trends and relationships much more effectively. In this
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Cause/Effect of Uncertainty Measurable Quantities Measured Criteria

Encoding
Precision

Binning, Cluster range
Privacy

Granularity Privacy
Spatial Accuracy Cluster Range Privacy

Decoding
Identity Cluster Overlaps Privacy, Utility
Traceability Cluster Splits Privacy, Utility
Pattern Complexity Semantic Structures Utility

Table 1: Connecting sources and effects of visual uncertainty to measurable quantities and their relationship to privacy and/or
utility. This helps in systematically defining metrics for a privacy-preserving visualization.

work, we apply the visual uncertainty metrics for measuring
the privacy and utility of the two types of clustering.

Advantages of visual clustering over data clustering are
two-fold: the selection of seed clusters is guided by proper-
ties of the pixel bins, that guarantees optimum cluster sizes
and the fact, that, individual axis pairs are clustered rather
than all the dimensions at once, thus preserving local struc-
tures. Properties of pixel bins like over plotting and con-
vergence/divergence provide an implicit aggregation for the
data points. The seed points for clusters are selected from the
bins with higher over plotting or convergence/divergence.
Since these artifacts are taken into account in visual clus-
tering, the quality of clustering is better, both from privacy
and utility points-of-view, that we prove with our metrics.

4. Privacy Model Based on Visual Uncertainty

In this section we conceptualize the relationship between
privacy and visual uncertainty in the context of position-
based representations like scatter plots, parallel coordinates,
etc. We refer to malicious users with intention of privacy
breach as attackers, and outline our assumptions regarding
their background knowledge about the data in course of our
description of the metrics.

4.1. Applying the Visual Uncertainty Taxonomy

Visual uncertainty can be decomposed into a set of encoding
and decoding uncertainties, according to the visual uncer-
tainty taxonomy [DCK12]. This taxonomic approach offers
an opportunity to identify the causes, effects and sources of
uncertainty that can be related to privacy and utility of a visu-
alization. In Table 1 we tie these different elements together.
In course of our ensuing discussion we refer to the various
levels of the taxonomy tree proposed in that work.

As discussed in Section 3, binning and clustering are the
basic elements of our privacy model. For encoding uncer-
tainty, one option can be hiding sensitive data values which
would lead to completeness uncertainty at the data map-
ping stage. However, since the goal is to minimize informa-
tion loss, we do not consider that option. Instead, we focus
on quantifying uncertainty introduced at the visual mapping
stage, since privacy-preservation is based on screen-space
properties. Encoding uncertainty in the form of precision
and granularity are introduced due to binning and clustering.

These are causes of intended uncertainty, affect the static vi-
sual representation of the clusters and are not influenced by
interaction.

The components of decoding uncertainty affect how an at-
tacker is able to gain information by using interaction. Clus-
ter overlaps cause identity uncertainty and and splits cause
traceability uncertainty (in parallel coordinates). These are
related to both privacy and utility. For example, if an attacker
knows the existence of a data value on one of the dimen-
sions, and tries to guess the values for the other dimensions,
then cluster overlaps help in creating identity uncertainty
and making privacy breach difficult by hiding the cluster
membership. However, too many overlaps create clutter and
therefore make effective perception of patterns more diffi-
cult. Thus decoding uncertainty includes both intended and
unintended forms of uncertainty. Metric-based analysis of
visual uncertainty helps quantify these different forms and
design a privacy-preserving visualization that balances these
trade-offs.

4.2. Connecting Privacy, Utility, and Visual Uncertainty

Information is a measure of the decrease of uncertainty for
the receiver of a message [Sha48]. If visualization is viewed
as a communication channel from the data space to the per-
ceptual and cognitive mental space of the user [PAJKW08],
it is important to trace the uncertainty along different stages
of the pipeline, so that the information communicated to the
user can be optimized. In case of privacy-preserving visu-
alizations, some forms of uncertainty would be intended, to
prevent disclosure of sensitive information. In general, in-
creasing the amount of visual uncertainty in a visualization
will increase privacy of the visualization while decreasing
its utility. In other words, privacy and utility are functions of
visual uncertainty.

Let u1,u2, . . . ,uk ∈ [0,1] be the quantities corresponding
to a set of measurable uncertainties in a visualization, with 0
being most certain and 1 being most uncertain. As certainty
is usually treated as probability [Hal03], here we consider
an uncertainty measure ui corresponds to a probability mea-
sure pi as a dual, i.e., ui = 1− pi. In this work we propose
different measures ui that address the different causes and
effects of uncertainty as categorized by the taxonomy of vi-
sual uncertainty [DCK12]. Here we use the term “measure”
in a broad sense, including both computational measurement
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and human-centered quantitative evaluation. Let us consider
two approximated measurements for privacy (mp) and utility
(mt ) of the visualization. In general, mp and each of ui are
positively (or non-negatively) correlated, while mt and ui are
negatively (or non-positively) correlated. However, the inte-
gration of different ui is much more complex in our context.
For example, given two uncertainty measurements, ua and
ub, for representing the visual uncertainty of two different
features a and b in a visualization,

• a privacy measure, mp = min(ua,ub) may be used if a pri-
vacy concern can be compromised by ascertaining either
a or b;

• mp = ua ·ub may be used if a privacy concern can only be
compromised by ascertaining both a and b jointly, and ua
and ub are independent;

• mp = ua+ub may be used if a privacy concern is accumu-
lative over different observations and ua and ub are mutu-
ally exclusive.

We can make similar observations about utility measure
mt . However, one cannot assume a uniform pair-wise re-
lationship across different uncertainty measures to be dis-
cussed in this work. This will become clear after detailing
different uncertainty in the following sections. In this sec-
tion, we give two generalized formulae for mp and mt re-
spectively.

mp = 1− βp

√√√√ k

∑
1

(
αp,i(1−ui)βp

)
(1)

mt =
βt

√√√√ k

∑
1

(
αt,i(1−ui)βt

)
(2)

where βp > 0, αp,i ≥ 0, and ∑i αp,i = 1. αt,i and βt are con-
strained in the same manner. Although mp and mt are within
the range of [0, 1] and encode a fair amount of probabilistic
information, we should not treat them as probability mea-
sures. In fact, it is more appropriate to consider both as dis-
tance measures. For example, by setting βp → ∞, the right
side of mp becomes a min function for all ui. However, as
these measures are not always applied to the same privacy
concern, we cannot really say if a specific part of a visualiza-
tion is compromised (e.g., ∃i,ui = 0), all other uncertainties
will also be compromised (i.e., ∀ j 6= i,u j = 0). After weight-
ing various pros and cons, we decide to set βp to 1 in this
work, which is the simple city block distance to emphasize
the difference of these measures. Similarly, by treating each
measure as a separate event, the simple city block distance
offers an adequate approximation to the mt in eq.( 1 ).

In practice, privacy and utility may also be affected by
factors other than visual uncertainty, such as the environment
where the visualization is used. The above measurement, mp
and mt should be used only for comparing visualization with

different forms of anonymization while those other factors
remain unchanged.

4.3. Choice of Metrics

For some forms of visual uncertainty, like that due to pat-
tern complexity, screen-space metrics already exist, like
Scagnostics for scatter plots [WAG05], Pargnostics for paral-
lel coordinates [DK10], etc. However, metrics for other types
of uncertainty are missing in the current literature. Some of
the metrics that we propose are applicable beyond the con-
text of privacy, where the issue of disparity between the large
number of data points and limited number of pixels arise.

Encoding uncertainty serves as the initial defensive mech-
anism against attackers with no background knowledge
about the data. Loss of precision due to binning and high-
level of granularity due to clustering make it difficult for an
attacker to guess the exact value and number of data points
within a cluster. To quantify these, we have developed the
cluster range metric and the cluster summary error metric.
The cluster range metric also captures the decoding uncer-
tainty involving spatial accuracy for guessing the location of
the data points within a cluster. Encoding uncertainty cannot
be reduced by using interaction.

When an attacker has some background knowledge about
the data, the different components of decoding uncertainty
help in confusing the attacker. When an attacker knows
about the existence about a particular data-point in the
database, the process of privacy breach starts by associating
a data point with a cluster. Identity uncertainty due to cluster
overlaps make that association difficult. Overlaps also lead
to clutter, where identifying paths of clusters itself is diffi-
cult. We quantify the privacy aspect of identity uncertainty
through the overlap entropy metric and the utility aspect
dealing with clutter, through the overlap clutter metric. For
line-based parallel coordinates, traceability of lines across
multiple dimensions is an advantage over scatter plots. How-
ever, in privacy-preserving parallel coordinates, due to axis
pair-wise clustering, clusters appear to split across axis. This
leads to uncertainty due to lack of traceability, that we cap-
ture through our average split count metric. For control-
ling the uncertainty due to pattern complexity we use the
Pargnostics metrics and also compute the mutual informa-
tion between adjacent dimensions. These are essential for
choosing the best adjacency configurations for parallel coor-
dinates and also point out the pairs of axes with high utility
in scatter plots.

5. Metrics

In the following section we introduce the metrics for measur-
ing the different types of uncertainty. We describe the type
of uncertainty measured by each metric and quantitatively
describe each with illustrations and examples from the Dia-
betes dataset that are described in detail in Section 6.
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YA > YB YA < YB
YAmYB YAsYB YA fYB YA = YB

YAoYB YAdYB
YBmYA YBsYA YB fYA YBoYA YBdYA

XA > XB N B E OB OB OB OB OB
XA < XB B N E OB OB OB OB OB
XA = XB OB OB OB OB OB OB OB OB
XAmXB E EB EB OB OB OB OB OB
XBmXA
XAsXB OB OB OB OB OB OB OB OB
XBsXA
XA f XB/

OB OB OB OB OB OB OB OB
XB f XA
XAoXB OB OB OB OB OB OB OB OB
XBoXA
XAdXB OB OB OB OB OB OB OB OB
XBdXA

Table 2: Cluster overlaps depending on the relationship of the clusters (A and B) on the axes (X and Y)in parallel coordinates.
N: No overlap either on the axes or between the axes; B: Overlap only between axes; OB: Overlap between as well as on the
axes; E: Meeting at the edge,EB: Meeting on the axes and overlap between axes.

5.1. Cluster Summary Error

The further an actual record is perceived to be located from
its actual position, the more difficult it would be to precisely
guess the value of a record. In case of pixel-based represen-
tation, binning already introduces loss in precision due to
quantization error. A cluster-based representation accentu-
ates the error: the further away a record is from the clus-
ter centroid, the more difficult it will be for knowing the
exact value. We measure the summary error for privacy-
preserving clustering as the Manhattan distance between the
its actual pixel coordinate and the pixel coordinate of the
cluster centroid. This is similar to the class consistency mea-
sure [SNLH09] for selecting optimal views of the data using
scatter plots. Although in case of cluster-based representa-
tion this is not directly reflected in what the user sees on
screen, the metric gives a quantitative measure of precision
uncertainty.

Consider a cluster Ct consists of nl records. It inter-
sects with an axis, spanning over several pixel bins, at ,at +
1, . . . ,bt−1,bt where 0≤ at ≤ bt ≤ h−1, where h is the total
number of pixels of this axis. The centroid of the intersected
section of the cluster is thus:

ηt =
at +bt

2

The error of this intersection εt can be defined in terms of
the Manhattan distance of the pixel coordinates of the data
points within a cluster from its centroid, as follows:

εt =
1

nlh

nl

∑
i=1
|si−ηt | (3)

The normalized average error over all clusters is given by:

ε =
1
nc

nc

∑
i=1

εt (4)

where si is the actual mapped pixel coordinate of record Ri
on that axis.

We compare the cases in Figure 1 for the cluster summary
error metric. For x-axis, we have: εA1 = 0.056, εB1 = 0.056;
εA2 = 0.222, εB2 = 0.222; and εA3 = 0.111, εB3 = 0.333.
For y-axis, we have: εA1 = 0.056, εB1 = 0.056; εA2 = 0.278,
εB2 = 0.222; and εA3 = 0.167, εB3 = 0.333. Therefore con-
figuration 1 is less private than configurations 2 and 3 on
both axes. The average cluster summary error is much higher
in case of data-based clustering. This coincides with higher
cluster ranges which leads to clutter and reduces the visual
quality. Information loss in terms of precision of data values
is also much higher in this case.

5.2. Cluster Range

Cluster ranges on the axes mask the precise location of the
data points. A cluster in the data-space is perceived in terms
of the number of record it contains. In the screen space, it
is perceived in terms of the number of pixel bins covered
by the cluster on the axes, which we define as cluster range.
When the analysts has no background knowledge about the
data and tries to randomly guess if data points exist or not,
cluster ranges lead to granularity uncertainty and that uncer-
tainty due to lack of spatial accuracy. The larger the range,
the less accurate will be estimation of the value of any record
within this range, and at the same time, the more likely will
it cause overlapping among clusters. Though a cluster range
can be perceived as both a privacy and utility metric, since
its primary role is masking data values and the uncertainty
is intended, we consider cluster range as a privacy metric.
Unlike cluster summary error, cluster range is independent
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nates but not in scatter plots.

Figure 3: Illustrating difference in effects of cluster over-
laps for scatter plots and parallel coordinates. The red clus-
ter is represented by A and the blue cluster by B.

of the number of records in the cluster or their individual
values.

Consider a cluster Ct . Its intersection with the axis spans
between pixel coordinates at and bt , where The normalized
range of this cluster is thus (bt − at)/(h− 1). We can de-
fine an axis-based metric as the average range of all clusters
intersecting with the axis as:

γ =
1

nc(h−1)

nc

∑
t=1

(bt −at) (5)

where nc is the total number of clusters. We compare the
cases in Figure 1 for the cluster range metric. For x-axis, we
have: γA1 = 0.125, γB1 = 0.125; γA2 = 0.5, γB2 = 0.5; and

γA3 = 0.25, γB3 = 0.75. For y-axis, we have: γA1 = 0.125,
γB1 = 0.125; γA2 = 0.625, γB2 = 0.500; and γA3 = 0.375,
γB3 = 0.750. Configurations 2 and 3 are therefore more pri-
vate than 1.

5.3. Overlap Clutter

Cluster overlaps lead to identity and traceability uncertainty
in perceiving the path of the clusters, therefore leading to
clutter. In line-based parallel coordinates, the vertical dis-
tance between the start and end points of a line on adjacent
axes can be treated as intervals [All83] to determine when
lines cross [DK10]. In the case of cluster-based parallel coor-
dinates and scatter plots, we treat the cluster ranges on each
axis as intervals for detecting cluster overlaps. Allen’s inter-
val algebra defines 13 possible cases between two intervals,
X and Y : X before Y , X starts Y , X ends Y , X meets Y , X
during Y , X overlaps Y , and X equals Y . All but the last con-
dition also have a symmetrical case. Given the 13 cases be-
tween the two clusters on each axis, we have to investigate
13×13 = 169 possible cases.

For parallel coordinates there are four possible pairwise
relationship between cluster ranges: no overlap (N), meet-
ing at the edges (E); overlap on and between axes (OB) and
meeting at the edges and overlap between axes (EB). In fact,
all cases where overlap happens on the axes also means that
there is overlap between the axes. For scatter plots on the
other hand, there is no distinction between an overlap on the
axis and that between the axes, because the coordinate posi-
tions can be anywhere between the axes. The possible rela-
tionships between cluster ranges in scatter plots, are there-
fore, N, E, and O. A simple enumeration of the 13∗13 con-
ditions enables us to draw a distinction among these overlap
cases. The different possibilities for parallel coordinates are
shown in Table 2 and those for scatter plots are shown in Ta-
ble 3. The symmetrical conditions are shown together except
for the greater than (>) and less than (<) condition as there
is a distinction between parallel coordinates and scatter plots
in this case.

Based on these conditions we can derive three cases that
are relevant for clutter: A) overlap conditions that do not lead
to clutter in either parallel coordinates or scatter plots (Fig-
ure 3(a)), B) overlap conditions that lead to clutter in both
parallel coordinates or scatter plots (Figure 3(b)), and C)
overlap conditions that lead to clutter in parallel coordi-
nates but not in scatter plots (Figure 3(c)). For A, the con-
ditions are either ‘before/after’ or ‘meets’ on both axes. For
B, the conditions are ‘overlaps’, ‘starts/finishes’ and ‘during
on both axes.

One distinction between parallel coordinates and scatter
plots is when there is a ‘before/after’ condition on one axis
and a different condition on the other. This is reflected in a
much higher number of N in Table 3 for scatter plots than
parallel coordinates. In these cases clusters overlap between
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YA > YB YA < YB
YAmYB YAsYB YA fYB YA = YB

YAoYB YAdYB
YBmYA YBsYA YB fYA YBoYA YBdYA

XA > XB N N N N N N N N
XA < XB N N N N N N N N
XA = XB N N O O O O O O
XAmXB N N E O O O O O
XBmXA
XAsXB N N O O O O O O
XBsXA
XA f XB N N O O O O O O
XB f XA
XAoXB N N O O O O O O
XBoXA
XAdXB N N O O O O O O
XBdXA

Table 3: Cluster overlaps depending on the relationship of the clusters (A and B) on the axes (X and Y)in scatter plots. The
notations are the same as in parallel coordinates except for the case B as there is no distinction between overlap between and
on the axes in scatter plots.

axes in parallel coordinates but there is no perceptual overlap
in scatter plots. These conditions are the basis for our overlap
clutter metric.

For the clusters, the upper bound for the number of over-
laps is nc(nc−1)

2 . Therefore we compute clutter in parallel co-
ordinates (CP) as:

CP =
2no

nc(nc−1)
(6)

where no is the total number of overlaps in parallel coordi-
nates or scatter plots. For scatter plots we denote clutter by
CS. Since no is much lower in scatter plots than parallel coor-
dinates, i.e., identity and traceability uncertainty are lower in
scatter plots than parallel coordinates, CP > CS irrespective
of higher or lower k.

5.4. Overlap Entropy

The previous metrics do not take any possible background
knowledge of an attacker into account. If an attacker knows
which cluster a data point belongs to, then the privacy breach
becomes easier, than the case when there is identity uncer-
tainty regarding associating a data point with a cluster. Over-
lapping cluster ranges on the axes lead to uncertainty be-
cause of difficulty in knowing which cluster a pixel bin be-
longs to and consequently, tracking the clusters across dif-
ferent axis-pairs. When certain data values are known to at-
tackers, overlaps help in creating uncertainty about cluster
membership of a data point as illustrated in Figure 4(a). We
use an information theoretic measure in the form of Shan-
non’s entropy to quantify the uncertainty in tracking precise
membership of a bin in cluster. This is similar to the privacy
metric based on entropy suggested by Agrawal et al. [AA01]
and Bertino et al. [BLJ08].

Consider nc clusters on an axis in a privacy preserving

parallel coordinates visualization. The axis has h pixel bins.
Each bin may intersect with zero, one or several clusters,
while each cluster may span over one or more bins. As iden-
tifying an empty bin is trivial, the uncertainty is thus associ-
ated with those bins that intersect with one or more clusters.
Assume that the attacker has no a priori knowledge about
any cluster, so the probability of making a correct guess of
the association between a bin and a cluster is independent
and identically-distributed.

Let αi be the number of clusters intersect with bin βi,
where 0≤ i≤ h−1. Given a cluster, Ct , the probability mass
function for identifying this cluster at bin βi is thus

P(t@i) =

{
0 if Ct does not intersect with βi

1/αi if Ct intersects with βi

The entropy in relation to cluster Ct is thus the following
sum computed over all non-zero Pt@i.

Ht =−
h−1

∑
i=0

P(t@i) lnP(t@i)

We can compute an information-theoretic measure of un-
certainty of the axis as

Φ =
∑

nc
t=1 Ht

ncHmax
(7)

Hmax is the maximum entropy value for Ht , which is asso-
ciated with a situation where every cluster spans over every
pixel bin, that is, P(t@i) = 1/nc for every cluster and every
bin. The lower Ht is, the lower information it contains about
Ct , and thus higher privacy. From empirical results, we have
observed that the absolute value of entropy increases with
increasing k. Since with increasing k there are more over-
laps, we have more uncertainty in the screen-space. When
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X Y X

Y

(a) When values on one axis are
known to the attacker, then over-
laps on the axis create identity un-
certainty about cluster membership
of those values.

(b) When values on both axes are
known to the attacker, then overlap
on both axes create identity uncer-
tainty. Large number of such over-
laps also reduces the mutual infor-
mation between adjacent axes.

Figure 4: Illustrating how overlaps on one axis and that on
both axes lead to uncertainty.

we compare with data-based clustering, the entropy value is
lower as compared to visual clustering, because of less num-
ber of overlaps among clusters (Figure 6b).

5.5. Mutual Information

When an attacker knows both coordinates of a two-
dimensional data point, then uncertainty due to overlaps is
only caused when overlaps are on both axes. As shown in
Figure 4(b), these types of overlaps reduce the mutual in-
formation between the two adjacent axes. We consider the
mutual information as an utility metric and this metric is
important for handling interaction scenarios like reordering
axes. The mutual information, a measure of the reduction
in uncertainty of one variable due to the knowledge of the
other, needs to be maximized for utility purposes. The gen-
eral formula for the mutual information between two random
variables X and Y is

I(X ;Y ) = ∑
x∈X

∑
y∈Y

P(x,y) ln
P(x,y)

P(x)P(y)
(8)

Where P(x,y) is the joint probability of x and y, and P(x)
and P(y) are the marginal probabilities. For a record with
values xi, j and xi, j+1 on adjacent axes on a parallel coordi-
nates plot, the joint probability is equal to the uncertainty
of that record’s exact location, which is determined by the
number of clusters that contain it. Consider two axes, x and
y. Given a specific cluster Ct , we can compute the probabil-
ity mass functions P(t@xi) and P(t@y j) as in the previous

B CA A B C

Figure 5: In case of multi-dimensional clustering,on the
left, there is no traceability uncertainty on brushing, as clus-
ters are continuous. In case of axis pairwise clustering, on
the right, traceability uncertainty of an axis pair depends on
the average number of split cluster on the adjacent axis.

section. The joint probability mass function can be defined
as:

P(t@xi, t@y j) =


0 if condition (i)

1
αx,iαy, j

if condition (ii)

where condition (i) is when Ct does not intersect with the ith

bin on x-axis or the jth bin on y-axis; and condition (ii) is
when Ct intersects with both the ith bin on x-axis and the jth

bin on y-axis. We can thus compute the mutual information
for cluster Ct between the two axes using I(X ;Y ) . The max-
imum mutual information is when all clusters intersect with
the two axes at the exactly same bins. As expected, mutual
information decreases for increasing k, but not monotoni-
cally for every k, as shown in Figure 6a).

5.6. Average Split Count

The average number of split cluster per axis pair is an indica-
tion of the traceability uncertainty. When an attacker selects
a cluster of interest, the larger the number of cluster splits
on the adjacent axes, the more difficult will it be to trace the
cluster that contains the same record as the selected cluster.
This form of uncertainty helps in meeting the l-diversity cri-
teria [MKGV07], which ensures sufficient diversity between
a quasi-identifier axis and a sensitive attribute axis, so that a
cluster cannot be associated with exactly one sensitive value.
In our previous work on privacy-preserving parallel coordi-
nates, we had shown how cluster splits help us achieve l-
diversity in the interactive scenario [DK11]. For computing
the average split count, we have to consider two axis pairs
together as shown in Figure 5. For each cluster, we compute
the number of splits on adjacent axes. The average number of
spits per cluster in axis pair, indicates the level of traceability
uncertainty where T is given by the following equation:

T =
1
nc

nc

∑
i=1

1
Split(Ci)

(9)

where Split(Ci) counts the number of split clusters for the ith
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cluster on adjacent axis. The lowest traceability uncertainty
is when T = 1, that is, there is a one-one association be-
tween clusters on adjacent axes. In case of multidimensional
clustering T is always equal to 1. We consider T as a utility
metric and 1−T as a privacy metric. In this respect multi-
dimensional clustering has higher utility than visual cluster-
ing. However, the privacy is lower because each cluster can
be associated with exactly one cluster on the adjacent axis.
In case of l-diversity this becomes a problem and can lead to
disclosure of sensitive attributes.

5.7. Measures based on Pargnostics

Visual structures in a visualization represent semantic pat-
terns within the data. Transformation of the representation
distorts those structures as in privacy-preserving cluster-
ing. The different visual artifacts, like parallel lines, con-
verging/diverging lines and line-crossings between adjacent
axes; represent the trends and relationship between adja-
cent data dimensions. In previous work we had developed a
set of metrics that quantify these different structural proper-
ties [DK10]. In case of cluster-based visualization, it is use-
ful to see how the structures get preserved or distorted with
comparison to line-based parallel coordinates. Since most
cluster boundaries represent connection between actual data
points, we treat the cluster boundaries as lines and apply the
Pargnostics metrics on this lines. Even in some cases where
the cluster boundaries do not represent actual data points,
their orientation between an axis-pair leads to the overall
perception of the dominant visual structure there.

Cluster Parallelism. To describe parallelism, we compute a
vertical distance histogram between any two cluster bound-
aries on adjacent axes. Then we look at the distribution
of the distance values and estimate the interquartile range.
Narrower range implies higher parallelism. We normalize
the distances between 0 and 1, by dividing by the highest
possible distance. With large cluster ranges cluster paral-
lelism (Parcluster) gets distorted.

Cluster Convergence/Divergence. In the original parallel
coordinates, lines converging to or diverging from a few
points on the adjacent axis form a frequently occurring
pattern. We exploit these properties for seeding our clus-
ters. The points with most convergence/divergence (which
of them is the dominant structure) are our starting points
for clustering. Similar to Pargnostics, we use the two-
dimensional axis histogram to calculate the amount of
convergence/divergence between adjacent axes and nor-
malize the values with the maximum value of conver-
gence/divergence.

To compute utility in terms of pattern preservation for
an axis-pair, we compute the ratio of cluster-based paral-
lelism (Parcluster) and line-based parallelism (Parlines), and
the ratio of cluster based convergence/divergence (CDcluster)

and line-based convergence/divergence (CDlines) and com-
pute the average pattern-preservation for an axis-pair (V ) as
follows:

V =
1
2

(
Parcluster

Parlines
+

CDcluster

CDlines

)
(10)

5.8. Additivity of Uncertainty Metrics

In the preceding sections, we described a number of uncer-
tainty and certainty measures, including cluster summary er-
ror (uncertainty, ε), cluster range (uncertainty, γ), overlap
clutter (certainty, C), overlap entropy (uncertainty, Φ), mu-
tual information (certainty, I), average split count (certainty,
T ), and pargnostics (certainty, V ). We consider that V , I and
C do not contribute much towards any privacy concerns. We
can remove their effects in formulating the privacy measure
mp by setting the corresponding αp,i to zero. For the remain-
ing measures, we simply treat them to have an equal con-
tribution by setting αp,i to the same value, i.e., 1/4 in this
case. We can easily observe that these measures are not ap-
plied to the same privacy concern, we cannot really say if ε

is compromised, γ , Φ and 1−T are also compromised. This
justifies our choice to use the Manhattan distance by setting
βp to 1 in Equation 1. Similarly we also remove the effects
of ε , γ , Φ in computing mt . For the remaining measures, we
simply treat them to have an equal contribution by setting
αt,i to the same value, i.e., 1/4 in this case.

6. Case Study

We use the Diabetes dataset [FA10] to illustrate the applica-
tion of our metrics. This dataset has 768 records and consists
of 6 dimensions: number of times pregnant, blood pressure,
serum insulin level, body mass index (BMI), age, and the
binary attribute class. The sensitive dimension is the class
attribute, all others are considered to make up the quasi-
identifier attribute.

6.1. Privacy

Privacy is measured in terms of both encoding and decod-
ing uncertainty as outlined in Table 1. On the encoding side,
cluster range (γ) and cluster summary error (η) are higher
in case of data-based clustering than visual clustering. This
implies that precision and granularity uncertainty are higher
in case of data-based clustering, signifying higher privacy.
However, as shown in Figure 6b, decoding uncertainty due
to overlaps, as measured by entropy, is much higher in case
of visual clustering. Here, we observe that the uncertainty
measured in terms of the overlap entropy of the axes (com-
puted based on equation 7), increases for increasing k, which
signifies higher uncertainty for guessing exactly which clus-
ter a record belongs to. This metric not only measures the
entropy in the static image, i.e, when highlighting/brushing
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a)

b)

c)

d)

k=2 k=8 k=2 k=8

Figure 6: Comparison of privacy and utility metrics for four different axis pairs in case of data clustering and visual clustering.
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is not available, but also covers cases where a user can se-
lect certain clusters by interaction. In our technique, when
several clusters overlap on a pixel bin, we only highlight
the smallest cluster. The attacker would thus not be certain
whether a record which he/she is trying to guess the value
of, belongs to that particular cluster.

In our experiments we have also found that the number
of clusters, whose boundaries exactly coincide (the ‘meets’
condition in Allen’s interval algebra), also decreases with in-
creasing k, because with increasing k, there is a greater loss
in precision of the values on the axis. This is beneficial from
a privacy point-of-view because for smaller k, cluster bound-
aries meeting precisely on a pixel can potentially cause dis-
closure of the the data-points on these boundaries [DK11].

Traceability uncertainty is also much higher in case of vi-
sual clustering due to the higher average split count than
in case of data-based clustering, where there are no clus-
ter splits and the clusters have a one-to-one correspondence
with continuing clusters on adjacent axes. As we discuss in
Section 5.6, this creates the lack of l-diversity problem. The
effect of higher cluster range and cluster summary error in
case of data-based clustering is offset by the higher overlap
entropy and higher average split count in case of visual clus-
tering. This is reflected in the graphs for net privacy (mp)
in Figure 6c, which shows that privacy achieved in case of
visual clustering is higher on average, than data-based clus-
tering.

6.2. Utility

Utility is expressed in terms of the different metrics for de-
coding uncertainty, mainly clutter and pattern complexity.
High mutual information between adjacent dimensions max-
imizes utility. Figure 6a) shows the variation of mutual in-
formation for increasing k for four different axis pairs of the
Diabetes dataset. The difference of mutual information be-
tween the two types of clustering is very pronounced due
to the large cluster ranges in case of data-based clustering,
which ensures that a two-dimensional data point is over-
lapped by multiple clusters on both axes in most cases.

With increasing k, it is expected that patterns in the visual-
ization will get distorted and will be more difficult to discern.
We are able to have better utility in terms of screen-space
clarity in case of visual clustering because of less pattern
complexity. For increasing k the effect of parallelism (com-
puted based on our discussion in Section 5.7) gets reduced.
However, the decrease happens in quite small increments
and therefore does not degrade the visualization much. In our
experiments we have observed that for converging-diverging
structures, there is no significant variation with changing k.
With very small k, like k = 2, the patterns are almost same as
in raw parallel coordinates. With increasing k, the number of
converging/diverging lines do not increase or decrease sig-
nificantly. This is because we use convergence-divergence

as a criterion for seeding the clusters and there is not much
change in choice of seeds with changing k.

Due to higher traceability uncertainty in case of visual
clustering, the utility is reduced. However, the effect of the
other uncertainty components is much more significant when
mt is computed. The comparison for net utility is shown in
Figure 6d, where we can observe that higher net utility in
case of visual clustering than data-based clustering.

6.3. Devising an effective k

We have shown that all the various uncertainty measures do
not increase or decrease monotonically with k. Especially
for overlap entropy and mutual information, there is a high
degree of variability across different k (Figures 6a and 6b).
A similar pattern is also reflected in the graphs for mp and
mt in Figures 6c and 6d. This implies that higher k does not
necessarily signify higher privacy and/or lower utility in the
screen-space. This is an important difference from privacy
preservation in the data space, where variation of k is directly
proportional to the privacy achieved or utility lost. Metric-
based analysis of visual uncertainty, therefore, will enable
visualization designers to choose the effective k based on
the requirements for privacy and utility.

6.4. Comparing parallel coordinates and scatter plots

Encoding uncertainty is identical in parallel coordinates and
scatter plots as we get the same values for the metrics. On
the decoding side, however, clutter and traceability produce
different results. Although clutter is less in scatter plots than
parallel coordinates, as described in Section 5.3, it cannot
be readily concluded that in terms of perception , the for-
mer is better. This is because the degree of distortion of the
visual structures is higher in scatter plots than parallel co-
ordinates. In scatter plots, points (zero-dimensional entities)
are transformed to rectangles (two-dimensional entities). In
case of parallel coordinates, lines (one-dimensional entities)
are transformed into polygons (two-dimensional entities).
Therefore the structural properties are much less distorted.
This can be observed in Figure 2, as the degree of linear re-
lationship in case of parallel coordinates is much better per-
ceptible than scatter plots.

7. Conclusions and Future Work

In the work reported here we have presented a privacy-
preservation model for visualization based on scatter plots
and parallel coordinates and proposed a set of metrics that
measure the privacy and utility as functions of visual uncer-
tainty. We have compared the data-based approach to ours
with respect to these metrics and have proved the effective-
ness of the latter in terms of utility and privacy. Some of
the proposed metrics are also applicable beyond the con-
fines of a privacy-preserving application, especially in case
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of cluster-based visualization [NH06]. The systematic quan-
tification of visual uncertainty also shows a new approach to
evaluating visualizations, so that they can can be iteratively
refined based on various constraints and requirements.

As a next step, we will design an optimization function
that balances the privacy and utility based on the metrics and
guides the configuration of the display accordingly. We also
want to apply the information-theoretic measures to com-
pare the level of privacy and utility that can be achieved in a
visualization to that in PPDM and point out the advantages
and disadvantages of each approach.
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