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Abstract

Observing interactions among chemical species and microorganisms in the earth’s sub-surface is a common task in
the field of geology. Bioremediation experiments constitute one such class of interactions which focus on getting rid
of pollutants through processes such as carbon sequestration. The main goal of scientists’ observations is to analyze
the dynamics of the chemical reactions and understand how they collectively affect the carbon content of the soil. In
our work, we extract the high-level goals of geologists and propose a visual analytics solution which helps scientists in
deriving insights about multivariate, temporal behavior of these chemical species. Specifically, our key contributions are
the following: i) characterization of the domain-specific goals and their translation to exploratory data analysis tasks,
ii) developing an analytical abstraction in the form of perceptually motivated screen-space metrics for bridging the gap
between the tasks and the visualization, and iii) realization of the tasks and metrics in the form of VIMTEX, which is a set
of coordinated multiple views for letting scientists observe multivariate, temporal relationships in the data. We provide
several examples and case studies along with expert feedback for demonstrating the efficacy of our solution.

1. Introduction
A key focus area in geology is the study of chemical reactions
in the earth’s subsurface and deriving insights about their envi-
ronmental implications. In the sub-field of bioremediation, sci-
entists aim to reduce soil pollutants through induced reaction
among microorganisms and chemical species [DHHP98]. Car-
bon sequestration is an example of a bioremediation process for
reduction of carbon and carbon compounds from soil. These
processes involve complex reactions that are difficult to model.
Often, scientists need to reformulate their hypotheses based on
observations and change experimental settings and parameters.
Currently there is a lack of exploratory data analysis tools that
support the analysis of the generated experimental data.

Scientists need tools that let them visualize the dynamics
of reactions over time, track salient temporal patterns, and de-
tect expected and unexpected behavior of the chemical com-
pounds. To address this need, by collaborating with geologists,
we developed a visual analytics solution for letting scientists
sift through the data of temporally changing concentrations of
different chemical compounds (henceforth referred to as vari-
ables) and explore and form new hypotheses about the chemical
processes.

In the bioremediation domain, we find only one instance
of interactive visualization being used for scientific analy-
sis [BCO01], where 3D volume rendering is used to show the
different temporal relationships, but multivariate patterns are

not captured. Current solutions for visualization of multivariate
temporal data [Dol07, AM07, AMM∗07] have two key short-
comings. First, there is a lack of explicit analytical abstraction
for combining time and multiple variables, which would help
scientists guide their attention towards the salient patterns. We
explicitly encode [GAW∗11] interesting relationships within the
visualization for letting scientists efficiently find those patterns
instead of sequentially searching for them. Second, existing
tools do not adequately capture geologists’ intents by letting
them focus on variables and variable-pairs and letting them
observe multivariate trends as context. Through our interface,
scientists can observe how individual variable concentrations
change over time and how combination of two or more variable
concentrations affect each other.

We have three specific contributions: i) we characterize
domain-specific questions and translate them to visual tasks and
metrics to quantify important patterns of interest; ii) we extend
previously proposed screen-space metrics and develop new met-
rics for characterizing visual features in relation to the tasks re-
lated to multivariate, temporal data analysis, and iii) we present
VIMTEX, which is a set of coordinated multiple views (such as
meta-level views and data-level views) that lets scientists navi-
gate through different time steps and multiple variables by ex-
ploiting visual feedback and guidance based on the metrics.
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Goals Patterns of Interest Views
Q1

Univariate distribution Temporal Summary
Q2
Q3

Multivariate patterns Detailed View
Q4
Q5 Bivariate Correlations,

Temporal Summary
Q6 Aggregations
Q7 Clumping of data points

Detailed View
Q8 Outlier data points

Table 1: Translating the domain-specific goals into data prop-
erties and views needed to build a visual analysis model. This
model guides the metrics encoded within the multiple views in
VIMTEX.

2. Domain Characterization and Task Analysis
In this work we collaborated with a team of geologists, all of
them with more than ten years of experience. Our first step was
to understand the problem domain through a series of informal
interviews and discussions, and derive an analysis model. This
model was then used to drive the design of the VIMTEX inter-
face. In this section we first provide an overview of our data and
then discuss our first contribution of characterizing the domain-
specific goals and deriving an analysis model.

2.1. Data Complexity
The complexity of the bioremediation process itself is signif-
icant. The simulation begins with the injection of acetate into
the subsurface. This injection initially stimulates the growth of
the bacteria Geobacteraceae, and this bacteria uses the acetate
substrate to reduce iron and aqueous uranium. The reduction
of uranium produces a solid called uraninite, so that the reduc-
tion process effectively removes uranium from the groundwa-
ter. The high level goal of the scientists was to track this re-
duction process over time, and detect expected and unexpected
patterns for the reaction among different chemical compounds.
This data originates from a numerical simulation that models a
complex, bioremediation [FYM∗09] field experiment event that
occurred over a two-month interim. The data consists of 10 dif-
ferent chemical compounds, i.e., variables, that are simulated on
a 3D grid of size 56 X 40 X 43 (approximately 96000 locations),
with 120 time steps.

2.2. Goals and Challenges
The high-level analysis questions which we distilled from our
discussion sessions can be classified into the following cate-
gories:
Q1. Which compounds are stable or unstable over time?
Q2. At which time steps do we see significant rise or fall in
concentration of a compound and why?
Q3. When concentration of a compound decreases or increases,
what is the effect on others?
Q4. What is the effect of reaction between two compounds on
others?
Q5. Which sets of compounds show similar levels of concentra-
tions over time and why?
Q6. At which time steps do we see similar concentration levels
and high reactivity? Are they expected?
Q7. Do the compounds behave similarly in particular locations?

Q8. Are reaction dynamics different in certain locations than
others?

From these questions, we observed that the focus of analy-
sis was on observing the temporal dynamics of the reactions,
and how different locations respond to those reactions. Our ini-
tial interactions revealed that temporal summary of the relation-
ships was essential in driving the analysis process. While a spa-
tial view would explicitly reveal the location of the cells, our
collaborators were initially not focused on identifying the loca-
tions, but on tracking if overall patterns were different for some
of the locations.

There were some key challenges with respect to visualization
design addressing the analysis goals. The most important one
was to reduce visual complexity in showing both multivariate
and temporal patterns. The size of the data was too large to fit
in a visualization display with a high-precision representation.
Since this would lead to clutter, a level of abstraction was nec-
essary. However, scientists were not keen on a very high level
of abstraction, as they would like to drill down and identify if
some of the cells behaved differently than the overall patterns.
Therefore, the most important guiding factor of our design was
to let scientists perform an efficient visual search for patterns
of interest by gaining an overview of salient temporal relation-
ships, and then drill down into subsets of data points and explore
multivariate patterns in more detail.

2.3. Analytical Abstraction
For handling the data complexity and for facilitating an effi-
cient visual search, our initial design decisions were centered
upon identifying the key patterns of interest. This let us build a
model based on screen-space metrics for expressing the patterns
through multiple views of both the metrics and the data.
Patterns of Interest: As shown in Table 1, the main patterns of
interest were univariate distributions, multivariate patterns and
bivariate relationships like correlation and aggregation. While
answering most of these questions scientists wanted to compare
the behavior of one variable with respect to all others, or the re-
action of two variables with respect to the rest. In most cases,
they wanted to resolve the questions Q1, Q2, and Q3, Q4 si-
multaneously. For example, if they found the concentration of
a compound falling at a particular time step, they would like to
immediately see the effect on the other compounds. These led
us to select variables and variable-pairs to be the building blocks
of our system. Using these building blocks, we aimed to build a
temporal summary view, which would capture the evolution of
different relationships over time; and a detailed view showing
the multivariate properties at any given time step. This was also
necessary to answer Q7 and Q8, where scientists wanted to look
at clusters and outliers.
Views: To satisfactorily answer the questions, we needed a
multivariate data view, which could show the patterns among
multiple variables at once, while allowing scientists to focus
on variables and variable-pairs. To address these design issues
we used parallel coordinates axes and axis pairs as the basic
building blocks for showing, multivariate patterns. Previously,
researchers have demonstrated that while analyzing multivari-
ate data, users initially look for distributions and patterns be-
tween two variables [CvW11]. In the context of parallel coor-
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Figure 1: For designing VIMTEX we use different histograms for quantifying visual properties, common to scatter plots and parallel
coordinates. As shown, each cell represents a pixel bin. Numbers within each cell in the first row represents the pixel coordinate of the
bin and the numbers within each cell in the other rows represent the frequency of the bin.

dinates, it has been argued [LMvW10] that users are mainly
looking for patterns in the two-dimensional space between the
axes. This is consistent with the scientists’ analysis goals. The
design of VIMTEX is centered around a parallel-coordinates
based coordinated multiple views and metrics which let scien-
tists shift between overview and details of multivariate, tem-
poral patterns (Figure 2). It could be argued that for showing
bivariate correlations, scatter plots or a scatter plot matrix is
a better choice than parallel coordinates. However, other crite-
ria, like looking at multivariate patterns and tracking anomalous
cells across different variables, are better addressed by parallel
coordinates. We consider this as a design trade-off and eventu-
ally our choice of a detailed view was using parallel coordinates
for the aforementioned reasons. For reflecting temporal change
of distribution of variables and relationship of variable pairs,
we used standard time-series plots. In this case, the time series
would not reflect the data, but metrics computed on the data.
Screen-Space Metrics: We decided to use screen-space met-
rics for computing patterns of interest. An alternative was to
compute statistical metrics based on the data and represent their
results visually. However, given the size of the data, comput-
ing metrics in the data space, was less efficient than computing
them in the screen space. To alleviate that problem, we decided
to first convert the data points to pixel-coordinates. This would
make the computation faster as the time complexity would be
independent of the data size. Since we were using pixel coor-
dinates, we used existing screen-space metrics and devised new
ones, as those were also perceptually more beneficial to the sci-
entists.

The screen-space metrics are computed through a frequency-
based representation of the data, where this representation is de-
termined through an output-oriented binning technique [NH06]
that relies on pixel binning. We adopt this strategy for two rea-
sons: i) pixel binning directly addresses scalability issues that

can arise when working with large numbers of data points, and
ii) the screen-space metrics based on pixel bins directly reflect
what the users see on screen ( [RJTTJ03, AdOL04]). This sec-
ond benefit is especially important in our work as our princi-
pal objective is to establish a direct correspondence between the
perceptually motivated metrics and the pixel-based representa-
tion on screen.

There are alternatives to using a discrete model. For example,
continuous data models, many based on a variety of density es-
timation strategies, can provide a highly accurate representation
of high-dimensional data [HW09, HBW11]. These approaches
can markedly reduce the data clutter that is inherent to visualiz-
ing a large number of points. In comparison to discrete models,
however, continuous data models tend to have a higher com-
putational complexity and their resulting density-based visual
representations may not be intuitive to domain scientists. Addi-
tionally, it can be challenging with continuous data models to
directly link our metrics with the pixel-based representation. In
our approach, we deal with the problem of clutter by enabling
metric-based brushing. When there is too much clutter, the met-
rics can be used for brushing, and those brushes would not only
show subsets, but also reveal relationships like aggregation, out-
liers, etc. Using standard statistical metrics, this would be diffi-
cult. For example, we can quantify correlation using Pearson’s
correlation coefficient between two variables. But often those
correlations are only exhibited by record subsets. When we use
a screen-space measure, it becomes easier to parameterize the
brushing mechanism and directly see how certain records (in
this case spatial cells) behave differently from the rest.

3. Related Work
We discuss the related work in the context of analytical abstrac-
tions for multivariate temporal data analysis and the different
variants of parallel coordinates for this purpose.
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Matrix	  View:	  Encodes	  temporal	  	  	  summary	  
of	  rela2onships	  between	  dimensions	  	  

Density	  View:	  Encodes	  temporal	  	  	  
summary	  of	  proper2es	  of	  dimensions	  

Data	  View:	  Encodes	  mul2variate	  view	  at	  
a	  par2cular	  2me	  step	  

Brushing	  Parameters	  
for	  exploring	  subsets	  

Time	  Slider:	  Allows	  interac2ve	  explora2on	  of	  
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Magnified	  View	  of	  Selected	  Cell:	  Allows	  
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Figure 2: The different components of VIMTEX are: A) Data view, which is a multivariate, time-varying view of the data and re-
orderable, B) Density view, which shows univariate temporal distribution with the selected axis pair being highlighted, and C) Matrix
view which shows the bivariate correlations as time-series.

3.1. Analysis Models for Multivariate, Temporal Data
Multivariate temporal datasets require analytical abstractions
for capturing the dynamic relationship among multiple vari-
ables. Integrating computational and visual aspects [GCML05]
by using clustering based visualization techniques for modeling
similarity-based temporal behavior have been proposed, where
parallel coordinates have been applied for visualizing the re-
sults of clustering. Pre-processing of data for extracting trend
sequences and subsequent visualization of those temporal trends
through parallel coordinates have also been used [LS09]. Func-
tional temporal plots for visualizing changes in correlation in a
matrix layout have been used in the context of gene-sequence
modeling [MMDP10]. These analytical abstraction methods fo-
cus on extracting information from the data and then using visu-
alization tools for communicating that information to the user.
In TimeSeer [DAW13], metrics based on scatter plot proper-
ties are used for guiding users. These metrics are however, not
motivated by high-level analysis goals of domain experts. Also,
for a large data size as in our case, using the metrics for show-
ing the data while reducing clutter is a non-trivial challenge.
In our approach, we use perceptually motivated screen-space
metrics for guiding the scientists towards answering their anal-
ysis questions, by finding the salient patterns which can be hid-
den among a subset of the data points. The system presented
by Glatter et al. [GHA∗08] follows a similar principle, where
a domain scientist specifies uncertain temporal patterns using a
description language, and patterns can be formulated as queries
using this language. Extracting importance based relationship
using information theoretic metrics to describe the visual struc-
tures [WYM08] is another example of such an approach.

3.2. Temporal Parallel Coordinates
Parallel coordinates [ID90] has been a popular technique for
visualizing scientific data and several variants have been pro-

posed. One of the examples is the application for hurricane data
analysis [SSJKF09] where statistical properties are mapped on
to the parallel coordinates axes. In the interface proposed by Ak-
iba and Ma [AM07], multivariate connections can be brushed
using a parallel coordinates interface, which in turn is linked
to time histograms and a direct volume rendering of selected
attributes. But as observed in the case of tiled parallel coor-
dinated display and min-max plots [CMR07] applied to time-
varying EEG data, the overall temporal distribution is not con-
veyed in this approach. Johannson et al. use depth cues and vari-
ation of opacity to show temporal properties in parallel coor-
dinates [JLC07]. This approach suffers from clutter in case of
large number of time steps and data-points. Our approach is to
look at the different recognizable visual features and use appro-
priate metrics to convey them. Blaas et al. [BBP08] use data
quantization and compression to handle large number of data
points in the context of parallel coordinates. While this works
well at the overview level, detailed exploration of features is
difficult using this approach. Frequency-based representations
like use of angular histograms [GPSL∗11] is similar to our ap-
proach. In our work, we apply some of the visualization de-
sign principles for simulation data as outlined by Doleisch et
al. [Dol07], with focus on the exploration and analysis aspects.
We have also incorporated some of the visualization strategies
for dealing with time-series data [MS03], where we address the
key issues of finding the temporal patterns and understanding
the change in behavior over time through linking of different
views of the data.

4. Computation Model
In VIMTEX the focus is on reducing the visual uncertainty due
to pattern complexity [DCK12] by using metrics that describe
the visual structures, thereby establishing a direct correspon-
dence between the behavior of the metrics and structural change
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on screen. The computation model is based on pixel binning and
a set of screen-space metrics. The metrics connect the domain
specific intents to the visual features within parallel coordinates.
They are generally applicable to scatter plots and parallel coor-
dinates.

4.1. Data density
For quantifying univariate distribution, our goal was to char-
acterize the data density in terms of the locus (where, on the
axis, most data values are located) and randomness (amount of
disorder among the values). For this purpose we propose two
metrics for characterizing the data distribution, the density me-
dian and interquartile range (IQR), both of which are computed
from the one-dimensional axis histogram. The pixel coordinate
of the density median is indicative of the degree of skewness of
an unimodal distribution.
Computation: Density median µ is computed from the median
of the frequencies of the pixel-bins in the one-dimensional axis
histogram. The location, that is the pixel coordinate of the me-
dian βµ , is then plotted over time. A high value of the median
at a particular time step means dominant values at that time step
are the high ones and a low value means dominant values are the
low ones. Similarly, high IQR will indicate a spread of values
and low IQR will indicate more concentrated values.
Implication: In Figures 1d and 1e the non-uniformity of the
distribution can be quantified by axis IQR. The distributions be-
ing more skewed in Figure 1e, IQR will be lower than in Fig-
ure 1d for both axes A and B. Locus of the median towards the
middle of the histogram in Figure 1d indicating an almost nor-
mal distribution. Locus of the median towards the ends of the
histograms in Figure 1e indicates skewness of the distribution.
Uniform distribution in Figure 1f can be indicated by high IQR.

4.1.1. Correlation and aggregation
For quantifying the change in temporal correlation and aggre-
gation between adjacent axes, we apply the parallelism met-
ric [DK10]. Parallelism among lines can reflect correlation and
aggregation in parallel coordinates. Since the metric is essen-
tially based on a distance histogram, it can also be directly ap-
plied to scatter plots. As shown earlier in Figure 1, the paral-
lelism metric [DK10] can imply different relationships between
data dimensions: positive linearity, aggregation and lack of lin-
earity. The parallelism metric is composed of two elements: the
range depicting the degree of correlation (if most data points
conform to the trend or are loosely scattered) and the median
or principal direction from left to right between two axes indi-
cating if parallel lines are going up, down or staying horizon-
tal. The direction is important in indicating association between
high and low values.
Computation: To compute parallelism, a distance histogram is
first constructed that records the distribution of pairwise verti-
cal distances between data points on adjacent axes. From this
histogram, the median distance value indicates the direction of
parallelism, if lines are staying horizontal or going upward or
downward. The direction is given by the median MP, which is
not normalized (the direction only makes sense in pixel coordi-
nates): MP = q50. Here q50 represents the 50% quartile of the
distance distribution.

The extent of parallelism is given by the interquartile range:

a narrow interquartile range implies high parallelism. We nor-
malize the distances between 0 and 1, by dividing by the highest
possible distance. We then compute parallelism Pnorm as follows
based on the interquartile range between the 25% and the 75%
quartiles, q25 and q75, given by Pnorm = 1− |q75 − q25|. The
subtraction is done to get a higher parallelism value for a higher
degree of parallelism (and thus a smaller interquartile range).
MP and Pnorm are used to draw line-plots for the median and
range for all the time steps that models the temporal trends over
time. These are illustrated in Section 5.3.
Implication: The locus of the median of the distance histogram
indicates the nature of association between A and B. As shown
in Figure 1j, the median being in the centre and interquartile
range being low, these imply positive linear correlation between
A and B. Similarly, in Figure 1k, locus of the median towards
the right of the histogram and low interquartile range indicates
strong association of low values of A with high values of B, im-
plying aggregation. On the other hand, in Figure 1l, higher in-
terquartile range indicates a more spread of the values between
A and B and thus implying a weaker aggregation. Higher in-
terquartile range can also reflect negative correlation. Users can
use brushing based on parallelism to confirm which of the two
features is dominant.

4.1.2. Clumping
Converging and diverging structures have been shown to be in-
teresting structures [DK10] in parallel coordinates. However, in
case of large datasets, lines do not converge to (or diverge from)
a precise pixel, but converge to a local neighborhood of pixels.
We compute the density of these clumped spaces or neighbor-
hoods by applying density-based clustering in the binned space
and computing the clumping factor. The advantage of clustering
in the screen-space, based on density of pixel bins is it relates
exactly to what the user sees on screen: semantics is generated
from the visualization, rather than the other way round. Compu-
tation of clumping factor requires two parameters: the number
of contiguous neighbors, and the density of a neighborhood that
is considered as clumpiness. The steps are described below.

When there are multiple modes, median alone is not an ac-
curate estimator of density. A multimodal distribution implies
data has a higher likelihood of being clumped in sub-spaces. To
explore if there are hidden clusters that are not distinguishable
from the overall patterns, we have developed a clumping met-
ric, based on the two-dimensional distribution based on an axis
pair. This is especially of relevance for temporal data, because
at many time steps, certain data-points tend to cluster/clump to-
gether in local neighborhoods. Clumping metric captures this
behavior.
Computation For determining the number of contiguous neigh-
bors, we first compute sparse regions based on the frequency
of the pixel bins. For this we use a two-dimensional axis-pair
histogram. A clumping cluster is cut off once a sparse region
is found. To compute clumping regions, we begin with the
convergence-divergence metric. Let us denote a sparse bin by
be indicated by β̄i.

Our clumping algorithm first selects the axis with higher
average convergence/divergence, and iterate through the pixel-
bins following the two subroutines that are described as follows:
Sparse Regions:

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



A. Dasgupta & R. Kosara & L. Gosink / VIMTEX: A Visualization Interface for Multivariate, Time-Varying, Geological Data Exploration

1. Set threshold for clumpiness to number of records divided
by number of bins, i.e. t = n

h .
2. If the frequency of a bin is less than the quartile of the thresh-

old, i.e., βi, j < 0.25t, consider the bin as a sparse bin.
3. Compute the number of contiguous sparse bins (η) for each

sparse region found.
4. Compute average sparseness as the number of contiguous

sparse bins divided by the number of sparse regions (v). So
we get

avg(η) =
1
v

v

∑
i=1

ηi

Average Clumping: Let the number of contiguous clumped
bins be denoted by ζ .
1. If the frequency of a bin is greater than t, add it to the cluster.
2. Continue adding bins until a sparse bin (β̄i) is found.
3. If v < avg(η) add bins to the cluster, else break.
4. Repeat steps 1 to 3 for all bins.
5. Add the number of bins in each clumped cluster. Divide by

the number of such clusters (e). That is the clumping fac-
tor (CLF).

CLF =
1
e

e

∑
i=1

ζi

Implication: As observed in Figure Figures 1g, 1h, and 1i, the
threshold (t) for clumpiness is set to 6. In Figure 1g, there is
one bin with clumpiness surrounded by two sparse regions on
either side. The clumping factors in this case is 10. For the case
illustrated in Figure 1h, once a clumped bin with frequency 6
is found, the next one with frequency 5 is added, and then the
cluster is cut off because of the sparse region with higher than
average sparseness. Thus in this case there is a clumped cluster
with two bins, with CLF 6. In Figure 1i, there is no clumping,
but high sparseness.

5. Multiple Views
We use the screen-space metrics as the basis for designing coor-
dinated multiple views (Figure 2) that show different properties
of the data. The detailed or the data view (A) based on parallel
coordinates is complemented by two temporal summary views,
or meta views (B, C), where metrics abstracted in the form of
time-series, are displayed. Interaction with these views enables
analysts to seamlessly navigate through interesting time steps
and data dimensions.

The views facilitate exploratory data analysis based on: a)
getting an overview of the temporal trends that evolve over time
and b) interactively explore patterns at time steps of interest and
drill down to details. Our design of the coordination among
the views follow Schneiderman’s visual information seeking
mantra [Shn96] by enabling the analysts to seamlessly switch
between gaining overview and exploring details.

The main data view (Figure 2A) provides a multivariate
representation of the data at different time steps. The metrics
are encoded within the meta views, which are i) the density
view (Figure 2B) shows the temporal behavior of each axis, and
ii)the matrix view (Figure 2C) that shows the pairwise temporal
behavior of the axes.
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Figure 3: Illustrating the data density metrics: Three different con-
figurations of the axis pair (kinetic iron and sorbed kinetic iron) on in-
teraction with the density view. Each blue box represents the density
median plot for sorbed kinetic iron and the red box represents the same
for kinetic iron. Low IQR clearly leads to more recognizable patterns due
to low clutter.

5.1. Density View
The density view is composed of sets of vertically stacked
boxes (Figure 2B), where each box corresponds to a dimension
and contains a line-plot and an area-plot. The line plot repre-
sents the density median and the area represents the IQR, time-
axis being horizontal. The configuration of this view is invariant
to the order of axes in the data view. Different colors (red for left
axis and purple for right axis) are used to represent the selected
axes. Even without interaction, the IQR and the pixel coordinate
of the density median plots give an overview of which variables
are stable or unstable.

5.2. Data View
The data view helps in addressing Q1 by enabling the analysts
to explore the features shown by the density view, that is, go-
ing from overview to the details. In this view we show the de-
fault parallel coordinates layout for our dataset, as shown in Fig-
ure 2A. The configuration is synchronized with the time-slider.
Global Scaling: We choose a global scaling for the variables,
i.e., we compute the maxima and minima for the different di-
mensions over all the time steps and scale the data points ac-
cordingly. This helps us in handling ranges that can vary a lot
from an initial time step to a later time step in a particular do-
main, which enables us to show how trends change within a
fixed data range.
Color Gradient: We use a continuous color gradient of green to
brown, to indicate the transition from low to high values on a
particular axis. The application of color gradient to an axis, and
not an axis pair, is motivated by the scientists’ goal of observing
the variance in concentration of the different variables with re-
spect to a specific variable. The color gradient is applied to the
left axis within the axis pair selected by a user, which is the pair
with kinetic sulfide (kinetic S−−) and tracer bromine (tracer Br)
in Figure 2A. The higher concentration of green lines on most
other axes give an overview of difference in high and low con-
centrations of multiple variables even without adjacency. This
also helps in reducing clutter when there is a large number of
line crossings, thereby making the trends stand out. A purple
color is used to indicate the brushed lines.
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Figure 4: Illustration of the parallelism metric, for two different
axis pairs. In a) parallelism reflects aggregation, while in b)
parallelism reflects positive linear correlation.

5.3. Matrix View
A problem with parallel coordinates is that ordering of the vari-
ables has to be effective enough to convey the different con-
ceivable properties that exist. This becomes an even bigger chal-
lenge for temporal data, because it is difficult to track the tempo-
ral pattern of all combinations of variables with the default lay-
out. To address this issue, we build a matrix layout (Figure 2C)
similar to a scatter plot matrix, and show the parallelism range
and median plots in that view. In Section 6.2 we describe in de-
tail how this view can be used for answering the questions about
bivariate relationships.

6. Visually Guided Analysis
VIMTEX visually guides domain experts in finding patterns of
interest in the data using the computation model described in
earlier Section 4. The meta-level temporal summary views and
the detailed data view of parallel coordinates helped our geolo-
gist collaborators in analyzing the data from multiple perspec-
tives to answer their questions (Q1-Q8). In this section we high-
light the functionality of VIMTEX by describing how our col-
laborators could use the metrics and views for answering these
questions. Later in Section 7 we describe in more detail what
they could find using VIMTEX and why they were important
from a geological perspective.

6.1. Identifying Stable and Unstable Behavior (Q1, Q2)
In the analytical context, we define stability as the degree to
which the data distribution remains unchanged over a period
of time. Q1 and Q2 are both addressed using the metrics for
data density by getting an overview from the density view, that
are discussed below. By linking the density view with parallel
coordinates, geologists could see compare the rise and fall in
concentration at specific time steps to the overall temporal pat-
terns. By focusing on variables and looking at multidimensional
patterns, they could also answer Q3 and Q4.

As illustrated earlier in Figure 1, the pixel coordinate of den-
sity median and IQR are computed from the one-dimensional
axis histogram. In Figure 3 we show a specific use case sce-
nario where these metrics are useful in answering Q1 and Q2.

Figure 5: Different degrees of clumping exhibited between uranium
carbonate and uraninite at subsequent time steps. The clumping met-
ric (C f ) returns a higher value when there are more clumped regions
with higher density as in the rightmost image.

The three boxes and their parallel coordinates representation are
for three different time steps for kinetic iron and sorbed kinetic
iron. For the first case, kinetic iron (red box) exhibits low value
for the pixel coordinate of density median and low IQR, and
same for sorbed kinetic iron (blue box). This is represented by
highly dominant and less dispersed green lines (signifying dom-
inance of low data values). In the second case pixel coordinate
of density median for left axis is higher and IQR for both axes
is higher. This is demonstrated by more brown lines, that signi-
fies higher concentration of kinetic iron being dominant. While
high IQR on both axes leads to a high dispersion among the
lines. In the last case, low value for the pixel coordinate of den-
sity median and low IQR are indicated by the dominant green
lines originating from kinetic iron. The difference from the first
case is the lines are highly dispersed, shown by high IQR value
for the right axis.

6.2. Exploring Bivariate Relationships (Q5,Q6)
The geologists were interested in observing bivariate relation-
ships such as similar levels of concentration and reactivity
among different combination of variables. In most cases they
wanted to focus on variable-pairs and then look at the multidi-
mensional patterns for answering Q3 and Q4. These properties
are quantified in terms of correlation and aggregation between
axis pairs in parallel coordinates, using the parallelism metric.
The advantage of using the parallelism metric is that even if
the aggregation or correlation patterns are not perceptible for
the variable pairs for all records, using brushing based on the
direction and extent of parallelism, one could find those rela-
tions easily. Intelligent brushing based on relationships rather
than only data points, helped geologists find interesting hidden
patterns.

An illustration of the parallelism metric is shown in Figure 4.
The upper part of the box which is a filled area, shows spread
of the parallel lines denoted by Pnorm. Line plot in the bot-
tom one depicts their direction, denoted by MP. A large area
under the curve corresponds to high parallelism (high Pnorm) ,
i.e., less spread and smaller area means less parallelism (lower
Pnorm), i.e. more spread. The lower part of the box shows the line
plot for MP. An indicator horizontal line through the middle of
the lower part indicates an MP value of 0, i.e., lines remaining
horizontally parallel to each other between adjacent axes. The
line plot going above the indicator line denotes most lines in
the parallel coordinates plot going upward (MP > 0) and when
below the indicator line, that denoted most lines going down-
ward (MP < 0).
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Figure 6: Clumping pattern among Iron sillicate, Iron hydrox-
ide and Iron sulphide that was an unexpected phenomena ac-
cording to the scientists’ initial hypothesis.

In Figure 4a, Pnorm is high initially and MP is much less than
zero. So we see many lines going downward from kinetic sul-
fate to kinetic iron. This indicates many locations having simi-
lar high concentration of kinetic sulfate and low concentration
of kinetic iron, and a correlation between these two. Later on,
Pnorm exhibits lower value but MP increases slightly. Therefore
we see more spread of the lines going downward. In Figure 4b,
Pnorm is high initially and MP has a very high value, reflecting
a strong aggregation of lines going up from uraninite to kinetic
sulfate. In the second time step, MP drops, reflecting a spread
of more lines going downward, implying a lack of aggregation,
and thus the concentration levels of uraninite being dissimilar
over time.

6.3. Exploring Clumping of Concentration Levels (Q7)
The clumping metric described in Section 4.1.2 was especially
important in judging the reactivity of different variables. The
high-level goal being observing dynamics of reactions, a high
degree of clumping between two variables usually meant low
reactivity between them. Using this metric scientists could also
analyze if certain locations exhibit similar levels of concentra-
tion than others (Q7) and if they are outlier locations (Q8). Axis
pairs with different degrees of CLF are shown in Figure 5. The
greater the clumping factor, the more the number of local neigh-
borhoods with larger number of lines converging to or diverg-
ing from those neighborhoods. Brushing by high clumping on
an axis pair enables an analyst to visualize the behavior of the
clusters across multiple axes and examine the temporal change
of those neighborhoods (Q3,Q4,Q6). In Figure 5a, we can ob-
serve only a few cell locations exhibiting a clumping pattern,
indicating high reactivity between uranium carbonate and urani-
nite. However, as uranium carbonate got depleted over time, we
can observe more cell locations exhibiting similarly low levels
of concentration indicated by clumping of low values in Fig-
ure 5b and Figure 5c. The converging structures also indicated a
low level of reactivity among uranium and uraninite over time.
Thus the clumping metric was of great help to the geologists to
explore subsets of variable concentration values and track their
properties over time, which would otherwise be difficult due to
clutter.

7. Case Study
In this section we demonstrate the usability of VIMTEX
through one of the case studies that our collaborators performed.
As this simulation is made up of over 29 unique reactions that
are temporally distinct, we limit our discussion to a few selected
motivating examples. The specific goals of were to identify the
utility of our analysis methods to accomplish a subset of their

(a) Brushing by principal direction between kinectic sulphate and sul-
phide

(b) Sulphate concentrations fall and sulphur concentrations rise as the
reaction approaches completion

Figure 7: Brushing by principal direction enables an analyst
to observe the association between low and high values of ad-
jacent dimensions and then observe the multivariate patterns.

original analysis questions: Task A) identify stable and unstable
trends in variables in order to help verify certain aspects of the
process models used to generate the data, and Task B) build
visual evidence to help confirm certain hypotheses regarding
the interactions between variables (specifically uraninite, sul-
fates and sulfides chemical species) and discover the trends and
anomalies, if any. Task A mainly focused on answering ques-
tions Q1 and Q2. Task B mainly addresses the questions Q5–Q8.
Q3 and Q4 could be combined with any of the other questions
for looking at the multivariate trends.
Addressing Q1 and Q2: We began analysis by using the den-
sity view to provide a high-level overview of univariate data
distribution for all variables. Addressing Task A (identifying
stable and unstable variables), the density view in Figure 8
shows certain chemical species, like iron silicate, iron hydrox-
ide, and iron sulphide maintain significant stability throughout
the bioremediation process as indicated by their unchanged uni-
form distributions over time. In contrast, other chemical species
display significantly more instability, indicating these variables
are more involved in the remediation process (e.g., kinetic sul-
fate and kinetic sulfide). The scientists found that the additional
metric views, apart from the main parallel coordinates view,
provided a nice overview for them to gauge if what they saw
matched their expectations.
Addressing Q5 and Q6: Next, we inspect the bivariate distribu-
tions between iron sillicate and hydroxide (matrix view in Fig-
ure 2C); In these distributions, note the strong parallelism be-
tween these species that remains more or less unchanged over
time. This stable trend in parallelism indicates strong correla-
tion throughout the simulation. This property was specifically
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(a) Brushing by low parallelism, we can see the lines that are outliers,
between uraninite (UO2) and kinetic iron (Fe).

(b) The same data points that showed up as outliers now show simi-
lar patterns to the majority trend between uraninite (UO2) and kinetic
iron (Fe++) towards the end of the simulation.

Figure 8: Gaining an overview from the bivariate view and the
univariate view allows an analyst to select outliers in the data
view. Density view indicates stable and unstable variables. Indi-
cated by green arrowhead: iron sillicate and iron hydroxide are
the stable variables. Kinetic sulfate and sulfide are the unstable
variables as indicated by the red arrow.
of interest to the scientists who further explored the subspace
between iron sillicate and hydroxide by brushing according to
clumping. As shown in Figure 6, this brushing indicates strong
clumping patterns between iron sillicate, hydroxide, and sul-
phide that remain largely unchanged across the temporal axis.
The scientists expressed surprise on seeing this trait and identi-
fied this as significant, in that stable clumping (in this instance)
implies a low level of reactivity between these variables that is
indicative of initialization errors in the simulation itself. This
was one of the major findings from using our tool, which the
scientists where not aware of before.
Combining Q1 and Q2 with Q5 and Q6: To address Task
B (build and confirm hypotheses), we look at the locus of den-
sity median plots (Figure 8) to get an overview of the inter-
actions between sulfates and sulfides. In this figure, the corre-
sponding boxes show gradually rising median trends for iron
sulfide (Fes) and kinetic sulfide, while sulfate concentrations
mostly remain high. From this visual information, the scien-
tists hypothesized that cells with initially low sulfur concen-
trations would exhibit a rise in these concentrations, especially
with respect to kinetic sulfate. This hypothesis was confirmed
by brushing by principal direction (Figure 7(a)) where a selec-
tion of downward trend shows a strong cluster between high
concentrations of kinetic sulfate, kinetic sulfide, and iron sul-
fide. This trend slowly gives way to more random patterns and
the rising concentrations of sulfur are reflected with scattered

brushed lines (Figure 7(b)). Our collaborators therefore con-
firmed their hypothesis and also concluded that concentrations
of sulfate species become depleted in the middle of the reaction,
and begin to rise again towards the end of the reaction.
Addressing Q7 and Q8: For examining anomalies, we se-
lect the axis pair involving uraninite and kinetic iron. Both
density view and parallelism views show strong initial down-
ward parallelism from uraninite to kinetic iron. We examine
the behavior of outliers by brushing using low parallelism as
the criteria which showed association between high values on
both axes (Figure 8(a)). While this was flagged as a potential
anomaly, the cells conformed to the expected trend of associa-
tion between high values of uraninite and low values of iron, to-
wards the end of the simulation, leading the scientists re-affirm
their reaction model. This also increased their trust in using the
metrics and the visualization for their analysis.
Feedback: From the first session we got feedback that were
used for improving the usability of the tool, that got subse-
quently evaluated in the following session. The scientists found
the idea of using information visualization tools to examine be-
havior of the variables, to be novel and commented that the tool
could be useful even in cases where they do not know the model
apriori. While it took them some time for grasping the concept
of using visual abstractions and coordinated multiple views for
showing salient relationships, with time they became comfort-
able with using the different views, and could visually detect
patterns and outliers. They particularly appreciated how effi-
ciently they could find the interesting patterns, which would
help them form new hypotheses and conduct further experi-
ments for running the simulation.

8. Conclusion and Future Work
Effectiveness of VIMTEX demonstrates how screen-space met-
rics can be applied in practice, which is a relatively new research
direction. Assisted by the metrics, geologists could not only
confirm their existing hypotheses about the chemical reactions
in bioremediation, but also form new hypotheses through their
interactions with VIMTEX. Our collaborators concluded that
even for unknown data VIMTEX would be effective to build
their hypotheses about the reactions in the simulation. Encour-
aged by the results, we want to conduct a formal user study in
the future for comparing our tool with existing approaches. We
will also apply our approach based on screen-space metrics to
multivariate temporal datasets from other domains such as stock
market analysis, cyber security, etc.
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