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Abstract

Real-world systems change continuously. In domains such as traffic monitoring or cyber security, such changes
occur within short time scales. This results in a streaming data problem and leads to unique challenges for the
human in the loop, as analysts have to ingest and make sense of dynamic patterns in real time. While visualizations
are being increasingly used by analysts to derive insights from streaming data, we lack a thorough characteriza-
tion of the human-centered design problems and a critical analysis of the state-of-the-art solutions that exist for
addressing these problems. In this paper, our goal is to fill this gap by studying how the state of the art in stream-
ing data visualization handles the challenges and reflect on the gaps and opportunities. To this end, we have three
contributions in this paper: i) problem characterization for identifying domain-specific goals and challenges for
handling streaming data, ii) a survey and analysis of the state of the art in streaming data visualization research
with a focus on how visualization design meets challenges specific to change perception, and iii) reflections on the
design trade-offs, and an outline of potential research directions for addressing the gaps in the state of the art.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Real-time data streams pose unique challenges for human-
in-the-loop data analysis processes. Monitoring heteroge-
neous streams for emergency response or building situa-
tional awareness about potential cyber attacks are complex
and demanding analytical tasks. Information visualization
techniques are being widely adopted in such scenarios for
helping analysts detect and synthesize fast-changing patterns
and keep their mental model about the data in sync with the
evolving stream. A key challenge in streaming visualizations
is in presenting salient changes to the data in such a way
that analysts can understand the context and relevance of the
changes, and reason about their causes and implications in
real time (Figure 1).

The field of streaming data visualization is maturing
quickly, with a number of techniques being developed for
event detection, handling text streams, analyzing social net-
work data, etc. However, there is a need to develop a deeper
understanding of how human perception and cognition can
cope with complex changes in continually evolving data

streams. Despite our high perceptual bandwidth, human at-
tention span is limited. This implies that visualizations not
only need to adapt to the fast rates of data streams but
also need to pre-attentively present and emphasize salient
changes by updating the underlying data through optimal en-
coding strategies. Two open questions in this context are: i)
How does the state-of-the-art streaming visualization design
address these challenges in change perception? ii) Can we
systematically identify goals, tasks, and related design chal-
lenges for improving upon the state of the art?

To address these questions, in this paper we look at the
streaming problem through the lens of perceptually mo-
tivated design problems for streaming data visualization.
Existing surveys on state-of-the-art streaming data analy-
sis have focused on techniques for mining patterns [ILG07]
or methods for addressing the problem of scale [BHKP10,
Joy09]. Researchers have also looked at the challenges for
developing visual analytics methods [MFK12], as visual-
ization techniques alone might not be able to solve many
challenges associated with interactive streaming analysis at
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Figure 1: Mapping properties of streaming data to chal-
lenges in change perception. In addition to volume and va-
riety that characterize much of the modern real-world data,
velocity and volatility are key attributes of streaming data.
While high velocity data leads to frequent updates that are
hard for a human to track, volatility of the data implies
unknown baseline behavior that can make it difficult for
analysts to understand the causes and implications of the
changes.

scale. In a complementary approach to these studies, we aim
to understand the human-centered streaming-specific goals
cutting across different domains, how they can be translated
into visualization tasks, and how state-of-the-art visual rep-
resentations are adapted to influence change perception in
high-velocity streaming environments.

To this effect, we have three specific contributions in
this state-of-the-art report. First, we describe the streaming-
specific analysis requirements across different domains that
can be synthesized into high-level goals and visualization
tasks. Second, we study the mapping between these goals
and the design space of information visualization techniques
developed for handling data streams. In the process we
highlight how machine-centered data transformations and
human-centered design approaches have been used and pro-
vide a comparative analysis of these approaches. Third, we
analyze the design challenges and trade-offs in a streaming
context, the gaps in current research, and identify research
directions that can address these gaps.

2. Methodology

Streaming data poses challenges for both automated meth-
ods like data mining and machine learning for extracting key

patterns, and for visualization techniques that communicate
the changing patterns to the analyst. In this section we de-
fine the scope of our work with respect to previous research
and describe the analysis workflow that helped us critique
the state of the art in streaming data visualization.

2.1. Definition and Scope

We adopt the definition of streaming data as proposed by
Babcock et al. [BBD∗02], where a stream is defined to be
a continuous flow of data, where the system has no con-
trol over the volume of the arriving data or the number
of updates, and only a small fraction of the whole stream
is archived at any point of time, while the rest is dis-
carded. These properties pose challenges for analysts ob-
serving the streams, who have to detect and understand fast-
changing patterns and their implications in a dynamic en-
vironment (Figure 1). In this paper, we restrict our scope
to understanding how streams influence change perception
through visualizations. The challenges for streaming data for
automated methods such as data mining or machine learning
are outside the scope of this work, and can be found in other
literature surveys [GZK05, Gam12].

A streaming visualization is one which adapts to the con-
tinuous flow of new data and follows certain strategies to
display salient changes in the context of the past data. These
strategies entail adjusting the encoding properties of static
visualizations, such as the choice of visual variables or lay-
outs, adding new elements to or removing old elements
from the visualization as necessary, all while appropriately
conveying changes in the underlying data to the end user.
We do not consider streaming visualization techniques to
have a new kind of design that is different from the design
of static visualizations, instead, they build on the existing
tenets of information visualization design principles. For this
reason, the field of streaming data visualization also over-
laps with many related research areas in visualization, such
as time-series visualization, dynamic network visualization,
and event detection techniques. What differentiates stream-
ing visualizations from visualizations of dynamic or time-
oriented data lies in how the visualization is to be used for
real-time change perception. Streaming visualizations are
characterized by needing a more immediate decision or ac-
tion from the user, which often rules out batch-oriented anal-
yses and traditional exploratory tasks.

Researchers have surveyed visualization techniques like
dynamic graphs [BBDW14] and those applicable to unstruc-
tured data [WSJ∗14]. Our goal in this paper is to go beyond
specific techniques or data types and focus on the challenge
of letting human analysts efficiently and effectively perceive
changing patterns and derive streaming insights [EPC14].
We investigate how strengths and limitations of the hu-
man perception system influence real-time data visualization
tasks and techniques, and reflect on the outstanding research
challenges in this regard.
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Figure 2: Our workflow was aimed at characterizing the human-centered challenges for streaming data analysis, mapping
those to the landscape of existing techniques and models through a critique of the state of the art, and presenting an analysis of
our findings reflecting on design trade-offs and future research opportunities.

2.2. Analysis workflow

When we started collecting papers related to streaming data
visualization, we realized that unlike the other more mature
areas of visualization research, such as techniques for high-
dimensional or temporal data analysis, the area of streaming
data visualization lacks a thorough characterization of the
problems and an analysis of the existing solution space. This
led us to develop a three-step workflow (Figure 2) as part
of our methodology, including a problem characterization of
domain-specific goals, their translation and mapping into vi-
sualization tasks for understanding change (state of the art),
and an analysis of the visualization design space for change
perception and their gaps and challenges. We describe them
below:

Problem Characterization: This phase in our study (Sec-
tion 3) was inspired by the domain and data characteriza-
tion phases of Munzner’s nested model for visualization de-
sign [Mun09]. We identified key domains in which stream-
ing data analysis is an integral part by looking into past lit-
erature on streaming data analysis in the research areas of
visualization, data mining, and machine learning. We lever-
aged the experience of two co-authors on this paper, both
of whom have more than 15 years of experience in visu-
alization and visual analytics, for grouping these domains
based on similarity of the intended domain-specific goals.
Next, we studied the literature related to the domain-specific
goals and tasks in these domains. For example, for research
related to cyber intrusion detection, we looked at survey pa-
pers that provide a descriptive summary of the cyber data
analysis goals [JLSW10]. This helped us distill a set of high-
level goals and tasks based on which streaming data domains
can be grouped, characterized, and supported by visualiza-
tion techniques. The outcome of this process (Figure 2) was

a characterization of the complexity of streaming data and
the associated goals and tasks across different domains.

Survey of the State of the Art: In this phase (Section 4), we
first collected research papers related to streaming and dy-
namic data visualization, by focusing our search on leading
visualization publications from the past twenty years. These
included proceedings of the Information Visualization Sym-
posium/Conference, and journals such as IEEE Transactions
of Visualization and Computer Graphics (TVCG), Computer
Graphics Forum, ACM CHI Conference, and IEEE Paci-
ficVis Symposium. We initially collected a list of papers
by searching with keywords “streaming", “dynamic", and
“real-time". Starting from this initial seed, we also looked
into their citations and included relevant papers from other
venues. We noted the type of visualization technique or
model, the evaluation strategies, and the key contributions
of each paper for streaming data analysis. In parallel, we
investigated the literature on human perception and cogni-
tion for identifying key visualization design challenges rel-
evant to real-time assimilation of streaming patterns. Exam-
ples of such papers included those related to change percep-
tion and blindness [NHT01, ROC97], attention deficiency
of human analysts under load [Lav05, MR98, MSCS05],
memorability criteria for visualizations [BVB∗13], and gen-
eral principles of human perception as applicable to visu-
alization [HBE95]. Using this analysis we described each
paper based on how they addressed human-centered and
machine-level problems and solutions for streaming data.
The outcome of this phase (Figure 2) was a set of commonly
used techniques and a systematic understanding of how spe-
cific human-centered challenges are addressed through the
streaming visualization design space.

Reflection on Gaps and Challenges: In this phase we syn-

c© The Eurographics Association 2016.



A. Dasgupta & D.L. Arendt & L. Franklin & P.C. Wong & K. Cook / Human Factors in Streaming Data Analysis

Velocity Volatility Representative Scenario

Which areas affected by flood need immediate action?
What are the signatures of threats and how can they 
be mitigated?

Are all flight paths adhering to the plan?

Domains

Emergency Response

Cyber Threat Mitigation

Air-Traffic Control

Stock Market Analysis

Social/News Media

Simulation Modeling

Fraud Detection 

In these particular geographical areas what are people 
talking about?

Is this a significant event compared to the past?

Compared to the transaction history, is this a fraudulent  
transaction?
How to reset the model parameters to get  better simulation 
performance?

Main Challenge for 
Analysts

Reason about changes based 
on unknown or evolving 
baseline behavior.

Detect key changes that 
deviate from baseline behavior.

Apply heuristics to determine 
meaningful changes.

Use historical context and 
current data to decide on 
actions.

How many nodes are currently affected?Cyber Intrusion Detection

Figure 3: Illustrating the relationships between complexity of streaming data and analysis scenarios across different
domains. High velocity and volatility of streaming data have posed unique challenges for an analyst. For different combinations
of velocity (high, low) and volatility (high, low), we highlight the domains, representative scenarios, and analysis goals.

thesized our findings by analyzing the gaps in the state of
the art by analyzing the perceptually motivated challenges
and design trade-offs for handling change sensitivity of dif-
ferent visual representations (Section 5). This was followed
by weighting these perceptually motivated challenges based
on the high-level goals and tasks. This was because only a
subset of design challenges are relevant for a certain goal
and it was important to identify them for guiding visual-
ization design. We focused our discussion based on the ex-
isting streaming visualization techniques and also based on
techniques that can be potentially applied to address design
challenges in a streaming scenario. We describe the different
design trade-offs based on the visualization tasks and high-
level goals. We draw connections with related research areas
that can be utilized for further exploration and evaluation
of these trade-offs. Finally we conclude by pointing out the
outstanding gaps (Section 6) and the associated research di-
rections that can be pursued for addressing those challenges.

3. Problem Characterization

In this section we characterize the problem of human-
centered streaming data analysis through two key steps:
i) analyzing the complexity of streaming data and its im-
plications on change perception (Figure 1), and ii) iden-
tifying key domains that involve streaming data reason-
ing [DVCVHF09] and cross-cutting high-level goals of do-
main experts (Figure 3).

3.1. Streaming Data-Driven Change Perception

Streaming data is characterized by its continuous
flow [BBD∗02] and is often distinguished by its high
velocity and volatility as compared to static data sources. As
shown in Figure 1, the four dimensions of streaming data:

volume, variety, velocity, and volatility [ZE∗11, KŽB∗14]
have unique implications for the perception of change for
an analyst in a dynamic environment.

Volume of changes in streaming data is quantified by the
number of updates to the existing data and velocity is de-
termined by the frequency of the updates. Large numbers of
updates at a fast rate make it difficult for analysts to keep
track of changes in a system. The frequency of updates can
also be unpredictable, where there can be an influx of bursty
data within a short span of time. In all these cases, an ana-
lyst tries to understand: what are the frequent changes in the
system. In domains that require real-time monitoring for im-
mediate decision making, like in air traffic control or emer-
gency response, analysts have to be constantly careful not to
miss any actionable changes and they typically depend on
alerts from the system for making them aware of changes
that need attention.

Variety of streaming data is characterized by the underly-
ing heterogeneous data sources, leading to complex changes
resulting from a combination of structured and unstructured
data (e.g., social media). In such cases analysts have to make
sense of change semantics, i.e., changes that are meaningful
and significant, by understanding the context provided by the
data.

Volatility of streaming data is mainly caused by unknown
baseline behavior of the attributes of data that are being
tracked. As described by Krempl et al., [KŽB∗14], ever-
changing patterns in a stream can cause a change of target
variable or feature availability to explain the changes, and
this can lead to change uncertainty. In such cases, analysts
need help from the system in understanding the causes of
the changes and what they imply for the immediate future.
Examples of such changes are drifts and concept evolution
in social networks. In domains such as social network anal-
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ysis or cyber threat detection such volatile data implies that
analysts are dependent on the system for summarizing and
semantically integrating multiple pieces of information at
different instances during the stream, otherwise such infor-
mation might become unusable due to the evolution of the
stream.

Examples: In Figure 3 we provide a high-level overview of
the different domains that can be grouped based on the ve-
locity and volatility of the data and provide representative
scenarios for each. We categorize velocity into three classes
based on the general frequency of the updates.

In the case of high velocity data, the update frequency is
in seconds or minutes, as in emergency response situations
when an event has happened and an analyst is constantly su-
pervising a scenario. When combined with high volatility,
the main challenge for the analyst is to often grapple with
unknown baseline behavior at a fast rate. For example, the
exact signatures of threats in a cyber system might be un-
known, yet streaming patterns of activities might raise sus-
picion that defenders need to monitor the system and against
which they need to take preventive action. Even in emer-
gency response scenarios, situations are often dynamically
evolving and analysts need to learn and decide in real-time
about possible mitigation mechanisms.

In the case of medium velocity data, the update frequency
is generally in minutes or hours, as in the case of air traffic
control [LJFJ14] or stock market analysis. Combined with
medium volatility, where the baseline behavior is mostly
known, the main challenge for an analyst is to compare
evolving changes to known baseline behavior and accord-
ingly decide on a course of action. Medium or low velocity
and highly volatile streaming data can be found in domains
such as social media or cyber intrusion detection. In those
cases, although baseline behavior might be unknown, cer-
tain heuristics (e.g., topic modeling in social media) can be
used to provide insights into the data.

In the case of low velocity data, update frequency is of the
order of hours to days, or periodic. An example scenario is
fraud detection while credit card monitoring, which depends
on a person’s transaction frequency. In such cases, the main
goal of the analyst is to compare current behavior of individ-
uals or other entities with respect to historically known base-
line behavior and accordingly decide whether action needs
to be taken to flag anomalies or influence future patterns of
behavior (e.g., model performance during simulation runs).

3.2. Domain-specific Goals

We consider a set of common domains where analysts are
faced with streaming data such as social media, cyber se-
curity, emergency response, and financial domains. We se-
lected these domains based on their usage in streaming data
analysis literature and also by analyzing the difference in

goals across these domains. We aimed for a more fine-
grained analysis of goals and tasks than the one presented by
Rohrdantz et al. [ROKF11] and came up with the following
high-level streaming data analysis goals based on which dif-
ferent domains can be classified: building Situational Aware-
ness (SA), Monitoring (Mon), and Event-Tracking (ET).

These domains span the three states of a data stream: past,
current, and future. The different goals and scenarios are
schematically represented in Figure 4, and described below.
The transition among the past, current, and future states are
dependent on the analysis scenario.

In the case of high velocity data, where updates are of
the order of seconds or minutes, the transition between past
and present is extremely rapid and often indistinguishable to
the analyst. In the case of low-velocity data, where updates
are of the order of hours or days, there is a distinguishable
past. The future state indicates a state of the system that is
a function of the current changes perceived by the analysts
and the actions taken by them to influence the outcome of
the changes. The future state is especially relevant where the
analyst wants to take an action for influencing the stream:
an emergency responder or cyber security analyst seeking to
mitigate situations that demand urgent attention and that can
can be resolved by their action.

The categorization of tasks ultimately helps us in identify-
ing the visualization-specific design challenges in a stream-
ing scenario.

Situational Awareness (SA): In building situational aware-
ness analysts are mostly concerned with getting actionable
insight from the system to influence the future. We adopt
Endsley’s [End95] definition of situational awareness, which
is “a three-part process of perception, comprehension, and
projection (into the future to make predictions) that leads
to decision making and then to actions." The perception
and comprehension task mainly involves reasoning about the
current state, followed by a projection or prediction about
the future. As noted by MacEachren et al. [MJR∗11], these
stages are closely related with the visual analytic loop where
sense making and information foraging are key tasks for
the analyst. The tasks can be exploratory in nature, as the
analyst is often searching for causal relationships at dif-
ferent levels of detail. Exploring mitigation strategies or
discovering unknown signatures for defending against cy-
ber threats [JLSW10] or use of social media for enhancing
awareness about an emergency situation [YLC∗12] are com-
mon examples of such sense-making tasks, that generally in-
volve highly volatile data. Reasoning and projection are key
tasks towards the overall goal, and these tasks typically need
the data to be represented at different levels of abstraction
and in coordinated multiple views for achieving those tasks.

The SA-related analytical tasks can be synthesized into
the following main types:

SA1: Summarize information from heterogeneous streaming

c© The Eurographics Association 2016.



A. Dasgupta & D.L. Arendt & L. Franklin & P.C. Wong & K. Cook / Human Factors in Streaming Data Analysis

Current FuturePast

Reasoning

Project

Current FuturePast

Reasoning

Current FuturePast

Situational Awareness

Active Monitoring

Event Tracking

Change Detection

Change Detection

History Retrieval (a) (b)

Figure 4: High-level streaming-specific analysis goals as found in the literature. The final set of goals we derived were:
Situational Awareness (SA), Monitoring (Mon), and Event Tracking (ET). Compared to SA and Mon, ET is a goal in cases
where the stream rate is low, that is, the temporal granularity of data update is of the order of days or weeks. In (a) the goals are
broken down into relevant analytical tasks, and in (b) we show the distribution of these goals in state-of-the-art techniques.

data sources for identifying causal relationships behind the
changing patterns.

SA2: Take domain knowledge into account and let analysts
explore dynamic what-if scenarios.

Based on our survey, we found that very few papers (with
the exception of [Erb12, FK14, MJR∗11, SBM∗14]) address
situational awareness scenarios. In Figure 5 we see one such
example where interactive feature selection is used for sum-
marizing and reasoning purposes.

Active Monitoring (Mon): Active monitoring is the most
common streaming data analysis goal where an analyst su-
pervises a system in real-time in the face of high-velocity
data. In most monitoring cases, baseline behavior is known
by the analyst and they are aware of which changes need
their attention. The problem that the human analysts face in

monitoring tasks is that due to the velocity of data, in the
absence of effective analysis tools, they might miss detect-
ing a change. Monitoring can also be combined for more
complex situational awareness tasks in domains with higher
volatility, as when social network data is used for immedi-
ate emergency response or potential cyber threats need to be
flagged by cyber defenders. Detection of patterns and rea-
soning about them in real time are the main tasks of the an-
alysts. Active monitoring was the most common application
scenario that we found, and the visualization tasks involved:

Mon1: Highlight changes in the stream and communicate
trends and anomalies in the stream.

Mon2: Present salient changes that require human attention
and differentiate among small and significant changes.

Common examples of stand-alone active monitoring

c© The Eurographics Association 2016.



A. Dasgupta & D.L. Arendt & L. Franklin & P.C. Wong & K. Cook / Human Factors in Streaming Data Analysis

Figure 5: Designing for enhancing situational awareness [FK14] where exploratory feature selection is used for summarizing
multiple time slices. Such exploration and summarization are necessary for stream reasoning and projection of future patterns.

tasks are air-traffic control or network intrusion detec-
tion [Axe00], where the analysts try to detect very specific
trends or anomalies and know what they are looking for.

Event Tracking (ET): Event tracking is a goal when the cur-
rent state of the system needs to be understood in the context
of the historical information, and the analyst either wants to
identify, compare, or retrieve events [WSJ∗14]. Historical
information is typically retrieved on demand, and a compu-
tational model is integrated with the data, with rules that flag
whether an event has occurred.

Common examples are social media data analysis or fraud
detection in credit card transactions. For comparing the sig-
nificance of the incoming data stream, analysts are often in-
terested in retrieving the history. Such event detection may
also help predict future events, as in the case of simulation
modeling [SEH∗15], where relationships between model pa-
rameters and outputs can be understood based on the defini-
tion of events. ET involves the following tasks:

ET1: Understand the importance of current patterns based
on the past context.

ET2: Compare current events to the past ones on demand.

4. Survey of the State of the Art

Our survey (Figure 6) focused on collecting examples of
visualization techniques designed for addressing streaming-
specific problems and solutions. In this regard, we differ-
entiate between techniques developed for handling dynamic
data, as opposed to streaming data. In the case of streaming
data, an analyst only looks at a specific snapshot of the data
at a particular instance of time and data is not stored in a ma-
chine’s memory, as it is in the case of emergency response
systems. In the case of dynamic data, while the data may be
changing over time, old data can be stored in memory and
used for event detection, as in credit card monitoring. In this

section, we present an exhaustive list of real-time stream-
ing visualization techniques, and a representative sample of
dynamic visualization techniques which can be adapted to
handle real-time streams. We use the following heuristic to
decide a representative sample: we group dynamic visualiza-
tion techniques into groups based on the visual representa-
tions and the tasks, and randomly select one technique that
is representative of that group. For example, dynamic graphs
form one group and papers such as [APP11, BPF14] are
representatives of that group. For a more detailed survey on
dynamic graph visualizations, we refer readers to the STAR
paper by Beck et al. [BBDW14]. For each of the listed tech-
niques, we study the data-specific problems and solutions,
human-centered problems and solutions, and the associated
evaluation strategies. Since the goal of this paper is to study
problems and solutions specific to the human-in-the-loop
situation, we present a detailed analysis of how streaming-
specific challenges are handled by encoding strategies and
compare their advantages and disadvantages.

4.1. Machine-level Problems and Solutions

The nature of streaming data is to naturally accumulate with
little to no bounds, requiring visualizations to accommo-
date this growth. Along with data accumulation, missing or
incomplete data, and heterogeneity of data are other prob-
lems that have been addressed in the visualization litera-
ture [FHL10,HSP14,Riv14,WSJ∗14]. As shown in Figure 6,
the following are the different data transformation strategies
employed while designing visualizations for handling these
problems.

Binning: Roughly a third of the papers we surveyed relied
on binning. Binning is effective in streaming environments
where the volume of data is so large that representing in-
dividual records is not practical. This technique introduces
uncertainty into the visualization by foregoing a direct repre-
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Figure 6: Surveying the state of the art based on the visualization techniques, machine-level and human-centered problems
and solutions, and evaluation strategies adopted in the papers. We focused our analysis on how human factors are addressed by
the design solutions and based on those factors we identified relevant design challenges and gaps.
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sentation of each data record and instead representing counts
of records across a set of intervals or faceted by a categori-
cal attribute. This allows an arbitrarily large number of data
records to be accounted for in the visualization by communi-
cating the shape of the distribution of records to the user. The
counts can be represented using a bar chart (e.g., spatial en-
coding of counts across intervals) to facilitate accurate visual
comparison of counts. However, we have also observed bin-
ning used in conjunction with a map (e.g., heatmap, calen-
dar, choropleth), where counts within geographical regions
are shown, as is the case in [FHL10]. Time discretizes in nat-
ural ways (e.g., months, weeks, days) which can be used as
bins to count records. This technique was used in [KWD∗13]
with a calendar visualization to represent the temporal in-
tensity of tweets on a particular subject using a calendar
heatmap. Clustering and binning can be used in conjunc-
tion when uniform discretization is not appropriate, as it was
in [SBM∗14].

Age of Data: The age of the data itself can be visually en-
coded for providing temporally relevant information to the
user. Obvious ways to represent the age of data include en-
coding time spatially (e.g., on a timeline) or encoding age
with size or color. Making younger data larger than older
data, or giving younger data more contrast from the back-
ground compared to older data can draw the user’s attention
towards these elements. This is helpful under the assumption
that younger data is more relevant or interesting than older
data. Below we discuss several unique solutions to data ag-
ing from our literature survey.

Erbacher visualized streaming data in concentric circles,
where newly arrived data was added to the outside of the
circle, giving it more screen space [Erb12]. Conversely, less
screen space was available to older data, which was assumed
to be of lesser importance. Huron et al. use a sedimenta-
tion metaphor to facilitate graceful aging of data [HVFM13].
New data records accumulate on top of a pile and form lay-
ers like sediment. As the data ages, it compacts (data records
become smaller) and is eventually replaced by an aggre-
gate representation where individual data points are indis-
tinguishable. Mansmann et al. also rely on compaction and
aggregation to handle graceful aging of data in their tool,
StreamSqueeze [MKF12]. Newer data is shown with the
most detail. As data ages, it gets less screen resolution and is
moved towards the right, exhibiting less level of detail than
the new data.

Sliding Window: Many papers in our survey employ a slid-
ing window as a method for handling the data aggregation
problem of the stream. This is commonly implemented as
an age-off policy for the data where any data older than an
arbitrary window size of t is either archived or discarded.
The visualization will often show high fidelity and interac-
tive views of all data younger than t to help preserve context,
however any context older than t is not available. In practice,
the sliding window approach can be combined with binning

or sampling techniques, but it is common to see integrated
views (e.g., spatial encoding of time) used with a sliding
window, by simply sliding the view to the left (when time
is on the horizontal axis) as time elapses. The solution pre-
sented by Mansmann et al. [MKF12] is notable because it
does not employ a fixed-width sliding window; instead the
tool maintains a representation of all data over time. It ad-
dresses the data accumulation problem by reducing the fi-
delity of the information shown as time elapses. Newer data
points are given much more screen space; older items get
less space and are eventually only are represented within a
histogram.

Sampling and Stream Steering: Sampling is a technique
that can be used when the underlying data stream contains
too much information for the back end systems to process
in real time. In this case, sampling techniques, which likely
involve machine learning models, can be used to pick and
choose what data to process and eventually show to the user.
Stream steering is an emerging area of research [FDCD12]
that investigates how to allow users to influence the sam-
pling process.This is accomplished in [BTH∗13] by allow-
ing users to create sophisticated filters that can identify in-
teresting documents (e.g., tweets, news articles, blog posts)
for the user in real time according to their topical content,
and not just based on keyword matching.

4.2. Human-centered Problems and Solutions

In this section, we first discuss the human-centered percep-
tual design challenges by linking them to the properties of
streaming velocity and volatility. Next, we discuss the dif-
ferent time encoding strategies we found in the literature that
are leveraged to handle these challenges.

4.2.1. Perceptually Motivated Design Challenges

In our survey, we found three perceptually motivated design
challenges that are explicitly or implicitly handled in the pa-
pers.

Context Preservation: In streaming scenarios, the percep-
tion of change is often influenced by the context. For ex-
ample, a feature subset might be predictive of a particu-
lar target variable, but when target variables change, so do
those subsets. In this case, the target variable provides the
context for the importance of the feature subsets. Preserv-
ing the context is most important for event tracking sce-
narios [BS04, BPF14], where there is a need to capture the
provenance and larger impact of data at different instants of
time. With respect to streaming data, this often means pre-
serving how the data have changed over time and even sup-
porting the recall of older information which has suddenly
regained relevance.

Mental Map Preservation: Changing patterns in a stream
can be complex, and that can affect the stability of a vi-
sual display. If the magnitude of changes between time
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Juxtaposition (Fischer2014)

Integration (Tanahashi2015)

Animation (MacEachren2011)Superimposition (Forbes2010)

Figure 7: Examples of time encoding strategies for streaming data visualization, which are: superimposition, juxtaposition,
integration, and animation. These strategies are discussed in Section 4.2.2.

steps are too large or too complex, analysts may find it
difficult to preserve their mental map about emerging pat-
terns [FHL10, HEF∗14]. This is especially important for
building situational awareness and exploring what-if scenar-
ios in the face of volatile data. In such cases, the analyst is
not always sure which patterns to look for, and what is caus-
ing them. To preserve the mental map, it is important for
visual representations to optimize visual quality of a display,
while at the same time provide multiple perspectives into
the data for the analyst’s mental model to be in sync with the
evolving stream.

Change-blindness Prevention: The change-blindness prob-
lem is caused by high frequency and large number of

changes in the stream, where in absence of pre-attentive
visual cues [ROC97], the human vision system is unable
to perceive changes even when able to see them. Ideally,
a streaming visualization system should leverage the pre-
attentive nature of visual variables for encoding changes in
the data. These changes must either be analyzed for impor-
tance and selectively displayed or the design of a visualiza-
tion must account for constant visual adjustment. Efforts to
address the prevention of change blindness often focus on re-
ducing visual clutter so as to make changes visually salient
and visualizations with explicit time encoding as in The-
meRiver [HHN00]. In some cases, even explicit represen-
tations of time are augmented with eye-catching animations
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or other decorations to mark changes [CAHF14]. Prevention
of change blindness should be a key design goal, especially
in the case of active monitoring scenarios. Even outside the
streaming scenario, researchers have aimed to characterize
visualization techniques based on their tendency to cause
change blindness [NHT01].

4.2.2. Time Encoding

All streaming visualizations result from design decisions re-
lated to how to handle time, or more specifically, that the
data of interest will change over time. Our survey revealed
four design patterns (Figure 7) for handling time for stream-
ing data visualization. Drawing from the nomenclature in-
troduced by Javed et al. [JE12] for static composite visual-
izations and later adapted by Beck et al. [BBDW14] for dy-
namic graph visualization, the four design patterns we iden-
tified for handling time in streaming visualization are: inte-
gration, juxtaposition, superimposition, and animation.

To help illustrate these concepts, we will use a “toy”
streaming data example of visualizing the trajectory of a
falling ball in real-time (Figure 8). Throughout these ex-
amples we use the term “model state” to describe the set
of salient features and corresponding values that need to be
communicated to the user to support the user’s streaming
analytics task. In the falling ball example, the model state is
the height of the ball. Integration and juxtaposition map time
into space; integration does so explicitly, by definition, and
juxtaposition does so implicitly by ordering views chrono-
logically. Animation shows only one version of the model
state, which is updated in place, whereas the other three
methods show copies of the model states at different times.
Usually animation, juxtaposition, and superimposition will
maintain the same scaling for colors and scales in order to
facilitate accurate comparison across different times, and to
preserve the mental map.

Animation: If we visually encode only the current height of
the falling ball, and update this visualization as the position
changes, we are using animation. The ball is always repre-
sented as a single entity in the visualization. Animation is
a commonly used design pattern in streaming visualization,
apparently because it is often straightforward (from an im-
plementation standpoint) to use animation to adapt a static
visualization to a streaming context. If a static visualization
already exists that is suitable to communicate the model state
within a snapshot or time window, then that visualization can
be updated “in place” to reflect the current model state. If
the frame rate of the visualization is high enough, and the
model state changes smoothly, then this directly results in an
animation effect. When this is not the case and updates to
the model state occur at longer intervals, interpolation can
be used so that visual elements transition smoothly, which
might help preserve the user’s mental map. Animation alone
makes comparisons between the past and the present awk-
ward for the user (e.g., requires playback, and seeking back

Figure 8: Illustrating the different time encoding tech-
niques we found in the literature using a falling ball ex-
ample, where T1, T2, T3 denotes the different states of the
ball.

and forth), which can cause problems with preserving the
user’s context. For monitoring, animations might be most ef-
fective as minor changes can be relevant [Blo05].

Integration: If we show the position of the ball as a func-
tion of time in a single visualization, such that time is spa-
tially encoded, we are using integration. A new visual object
representing the ball is added to the visualization for each
new time frame. The visual “copies” of the ball can be con-
nected (i.e., integrated) using lines to communicate they are
the same object. When the position of the ball is drawn as a
continuous function, this is often referred to as a “timeline”
or “space-time plot.” We consider these special cases of the
use of integration for streaming data. Integrated streaming
visualizations generally should explicitly handle data age-
off. As time elapses, more and more copies of the model
state will accumulate in the visualization because new copies
are being added during each frame, and old objects that are
no longer relevant should be removed to reduce clutter. A
common solution is to remove all visual encodings of the
model state older than some arbitrary time duration. In cases
where time is encoded on the horizontal axis, this manifests
as a sliding window effect, which is a commonly used solu-
tion. Integration can be helpful in preserving context because
the present model state can be more easily contrasted against
past states versus animation.

A unique example of integration is the use of storylines to
convey changing relationships over time [THM15], which
is shown in Figure 7. In this case the visualization is built
of alternating representations of the relationships within a
time window, and integrating lines connecting adjacent time
windows. The integrating lines are styled to appear identical
to the lines within the time window to give the appearance of
a continuous timeline for each “character” in the storyline.

Juxtaposition: If we were to repeatedly take a snapshot of
the ball as it falls, and then arrange those snapshots accord-
ing to time (similar to a comic strip), we would be using jux-
taposition. Similar to integration, an additional visual repre-
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sentation of the model is added to each frame. In this case,
juxtaposition can be similar to integration, however, we con-
sider juxtaposition to employ an implicit spatial encoding of
time, whereas it is explicit in the case of integration. Juxtapo-
sition often employs small multiples and is used in place of
integration in a streaming context when views of the model
state are too complex or challenging to be combined into a
single view.

For example, juxtaposition was used in [FK14] to com-
municate how topics (distribution over words, represented
as a word cloud) evolve over time; an example of this is
shown in Figure 7. We see juxtaposition used frequently for
dynamic graph visualization due to the abundance of effec-
tive open source graph layout algorithms for static graphs.
A new view of the graph can be generated each frame using
static methods, and then juxtaposed with the previous frames
to show the change. Graphs during different time windows
are drawn in separate, adjacent views to help the user un-
derstand how the topology of the graph is changing over
time [BPF14, RM13]. Dynamic graph researchers hypoth-
esize that minimizing changes across juxtaposed views over
time is important to preserve the user’s mental map, which
should improve their ability to understand change over time
in these data sets [APP11].

Superimposition: If we took a multiple exposure pho-
tograph of the falling ball (from the previous example),
we would be employing superimposition. Superimposition
compresses the model state at different times onto the same
view using the same visual encoding. While we no longer
would have an implicit or explicit spatial encoding of time,
time can be communicated using other retinal properties
such as color or size. Superimposition can help with pre-
serving context and preserving the mental map, because the
visual encodings are consistent over time, and because past
and present are comparable in the same view. Furthermore,
superimposition can be more space-efficient than integration
and juxtaposition due to the reuse of space. Because views
of the model state are closer together, making comparisons
between past and present can be more efficient with super-
imposition as compared to the other methods discussed. A
trade-off is that superimposed views will likely suffer from
visual clutter and over plotting more readily than the alter-
natives.

Our survey revealed that superimposition was the least
commonly used technique for handling time in streaming
data. This was surprising given that this technique can be
fairly easily implemented from a pre-existing static visual-
ization, and has the advantage of showing data in context,
as well as helping to preserve the mental map. Animation
combined with superimposition (e.g., by showing the recent
paths taken) is used in [FHL10, Moe04]. In [BSH∗16] su-
perimposition is used by projecting high-dimensional data
at different time windows into a common two-dimensional
space. Different instances of the model state are represented

as single points to allow the user to see the relatedness of the
model state over time, and detect patterns such as oscillation,
stagnation, divergence, or recurrence.

4.3. Evaluation

Evaluations of the research efforts to address these stream-
ing challenges have been diverse. In this work, we categorize
evaluations into one of several forms. Case studies involve
research that is presented as proof of concept and applied to
a particular domain. During a case study, the application may
have been provided to users not associated with the research
team, but was done so without controlled tasks or conditions.
User studies evaluate prototype research under controlled
conditions with participants to produce quantitative results.
Expert studies constitute evaluations which make use of pre-
sented research as a prototype and include review by domain
experts not associated with the presenting researchers. Fi-
nally, technical benchmarks involve demonstrating the effi-
ciency or data handling abilities of a prototype or algorithm
without consideration of users or tasks. As shown in Fig-
ure 6, the problems of data accumulation, heterogeneous,
and missing data are lacking in user-oriented evaluations.
With the exception of [CAHF14] and [SBM∗14], most re-
search relies on technical benchmarks and demonstrations
without determining if the visualization strategies are in fact
effective and supporting user tasks. Conversely, most work
addressing change blindness, context preservation, and men-
tal map preservation relies on at least expert feedback or case
studies to determine efficacy. In our survey we also found
a general lack of quantitative user studies that either sim-
ulate real-world streaming environments or let domain ex-
perts perform certain tasks in a controlled setting. For some
of the quantitative studies we also found update rates of the
stream to be of the order of several minutes, which might not
be a realistic scenario, especially where active monitoring of
high-velocity streams is necessary.

In Figure 9 we describe how well human-centered design
challenges are addressed by the techniques in terms of scala-
bility, expressiveness [Mac86] for depicting change, change-
blindness prevention, context-preservation, and mental-map
preservation. Visualization types highlighted in bold have
been explicitly applied in a streaming context. Connected
scatter plots [HKF16], slope graphs [Sch14] and parallel co-
ordinates [DKG15] can be used for encoding change, but
have not been applied on streaming data.

5. Analyzing Design Challenges and Trade-offs

In this section we analyze the change sensitivity of the com-
mon streaming data visualization techniques. We classify the
visualizations based on two encoding properties: which vi-
sual variables induces a perception of change in response to a
stream, and what type of time encoding the visualization em-
ploys (Figure 9). Based on this classification we identify the
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Figure 9: Investigating the design-trade-offs for the common streaming data visualization techniques that we surveyed.
The visualizations that are bold highlighted have been applied in the context of streaming data, while the other visualizations,
such as the connected scatter plot [Kos16], slope graph [Sch14], and the parallel coordinates, have mostly been applied in the
context of static data analysis.

merits and drawbacks of the techniques. For such identifica-
tion we consider two more change sensitivity criteria in ad-
dition to the criteria of context preservation, mental-map
preservation and change-blindness prevention. These are:
scalability of a technique, which determines how a large
number of changes can be accommodated, and expressive-
ness [Mac86], which determines if the salient changing pat-
terns are clearly communicated to the analyst. To simplify
our analysis, we identify the main advantage of a technique
and its main disadvantage. We recognize that a more nu-
anced analysis might be necessary and a weighted score
might be ideal in classifying the techniques, but we leave
that for future work, as an extension to the analysis presented
here. In addition to the techniques found in the survey, we
analyzed techniques like slope graphs [Sch14], connected

scatter plots [HKF16], and temporal MDS plots [JFSK16]
that are relevant to the time encoding strategies and can be
applied in the context of streaming data visualization.

5.1. Change in Position

Encoding change through position is the most common strat-
egy used across many techniques. In a basic line graph or in
timeline plots [SRHH16, DFSK16, GS14, SBM∗14] time is
encoded on one of the axes and superposing lines can en-
code the temporal trajectory of a stream. Line graphs are
highly expressive and an optimal choice for showing tem-
poral trends as they can communicate changing patterns
quickly and effectively. For univariate data, especially in sce-
narios where analysts are looking for specific trends (e.g,
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variation in trajectories for air-traffic monitoring) as in the
case of active monitoring, there are few better encoding
choices than superimposing lines. However in presence of
bursty data, a rapid change in scale of a variable can affect
how the magnitude of change is perceived. Also for this ap-
proach, encoding change for multiple variables and a high
volume of data can be challenging due to a lack of scalabil-
ity.

Connected scatter plots [HKF16] and slope
graphs [Sch14] are techniques used by the news media for
integrating temporal information within a two-dimensional
plot. While they are able to preserve the past context directly,
and can be effective in historical retrieval tasks, they can
be difficult to read and suffer from lack of expressiveness
about key trends and anomalies. These plots are not suitable
in monitoring situations, but might be used for reasoning
and projection tasks for building situational awareness.

Parallel Coordinate Plots (PCP) represent multivariate
data by encoding samples as contiguous line segments con-
necting pairs of variables assigned to vertical axes [ID87],
and time can be an additional axis [HW13]. In a PCP the
ordering of the axes determines which n− 1 out of a pos-
sible n·(n−1)

2 axis pairs are visible. A good ordering of the
axes might reduce clutter and reveal patterns (e.g., clus-
ters, trends) that are not otherwise visible with a different
axis order. Many quality metrics for PCPs have been pro-
posed with the assumption that an axis ordering that opti-
mizes a given metric will improve the user’s performance
in certain analytical tasks [DK10]. PCPs have been used
to show how a collection of multivariate objects changes
over time by mapping time to the user’s time (i.e., anima-
tion) [BS04, BBP08, The06]. In a streaming context, PCPs
could be used to show recently collected samples (e.g., sam-
ples no older than t, or the k most recent samples). To our
knowledge there has been no demonstration or systematic
evaluation of a technique to automatically reorder PCP axes
in a dynamic or streaming context and preserve the mental
map of a user at the same time.

5.2. Change in Layout

Change in position of points coupled with the change in ori-
entation of their groupings or their connections can lead to
a perception of change in the overall layout of a particular
view. This is most common in the case of two-dimensional
projections of multidimensional data or node-link diagrams.
Dimension embedding techniques project high dimensional
data (e.g., multivariate or connectivity data) into a lower di-
mensional space (usually D = 2) by placing similar samples
(e.g., nearby in the feature space) close together in the lower
dimensional embedding. Juxtaposed views of such MDS
plots [WFA∗03, XWR10] can be used to represent differ-
ent slices of time. Force directed graph drawing algorithms
can be considered a special case of this broader problem,

where similarity is a binary relation equivalent to connectiv-
ity. Preserving high dimensional similarity (or distance) in
low dimensional space is usually addressed directly by an
optimization algorithm (e.g., MDS) or is an emergent out-
come of the algorithm. This can help reveal features in the
global structure of the data including clusters, holes, or re-
lationships (when attributes not used by the embedding are
encoded as shape, size, or color). The main advantage of this
approach is that they are scalable with respect to large di-
mensionality of the data.

When data changes, the current spatial layout may be-
come very sub-optimal if it is not adjusted to reflect the
new relationships in the data. This problem has been ex-
plored in a streaming context by the dynamic graph draw-
ing community, where a long standing hypothesis is that
“preserving the user’s mental map” is extremely impor-
tant [APP11, BBDW14, PHG06]. There are also examples
of MDS and related dimensional embedding techniques be-
ing used in a streaming context [ACZ∗11, WFA∗03], but
these approaches have explicitly focused on preserving the
user’s mental mapping as the data changes, except in the case
of [GHN12] where the problem of computing the positions
of the dynamic multivariate data (i.e., streaming text) was
transformed into a dynamic graph layout problem. This il-
lustrates the close relationship between graph drawing and
dimension embedding techniques–problems that appear to
be unsolved, yet dynamic dimension embedding techniques
may have good solutions, or at least starting points, in the
dynamic graph drawing community.

5.3. Change in Retinal Properties and Layout

Retinal properties such as area, size, etc. have been used
in several visualization techniques for encoding change.
Techniques such as treemaps [JS91] and circle pack-
ing [WWDW06] are effective at representing large hierar-
chical datasets where each element also has a primary at-
tribute that is encoded visually as area or size, and other
secondary attributes that can be encoded with color, texture,
etc. Updated data is generally superposed on the old data.
These general techniques use visual containment to repre-
sent the hierarchy, and solutions generally use heuristics to
quickly determine how to effectively place child elements
within their parent container. In the case of treemaps, a popu-
lar heuristic produces squarified treemaps [BHvW00], where
the aspect ratio of the elements is usually low. The circle
packing algorithm tries to produce layouts where the area of
the parent circle is not much larger than the total area of the
child circles–in other words, it reduces unnecessary whites-
pace.

In a streaming context, change encoding using retinal
variables and time encoding using the superposition strat-
egy can quickly show a large number relevant changes, lead-
ing to high scalability, but in presence of a high frequency
and large number of changes, analysts’ attention might not
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be focused on relevant changes, and thus change blindness
can occur. Additionally, small changes to the hierarchy or
primary attributes might have a large effect on the layout
of the visualization, and therefore the user’s perception of
the change. For example, with treemaps, the order of child
nodes within a parent is sometimes determined by the pri-
mary attribute in order to improve the quality of the visual-
ization. However, a relatively small change to the primary
attribute of a single node can have a disproportionately large
change to its order, which could cause confusion and lead to
change blindness. Mental-map preservation is also a prob-
lem in this case. This problem has been investigated and
addressed using dynamic voronoi treemaps [SFL10], which
are designed to be stable against changes to the primary at-
tribute, as well as to zooming. Dealing with changing hierar-
chies in a streaming context seems even more problematic,
but because trees are special cases of graphs, solutions might
be drawn from techniques for dynamic graph drawing.

5.4. Change in Position and Retinal Properties

A combination of position and retinal properties have been
used in several techniques, and they vary based on the time
encoding strategy used. Streamgraphs show the aggregate of
many univariate time series by superposing individual time
series, which are referred to as streams [BW08, DBH16,
FMK12]. Color is used to allow the user to differentiate
between the different streams, and to understand how the
whole is composed of the individual parts (streams) over
time. Time is usually encoded on the horizontal axis, leaving
the primary attribute of the time series to be encoded as the
thickness of the stream at that timepoint.

Therefore, the vertical position of a stream is dependent
on the sum of the thicknesses of all the streams below it,
plus a baseline. The height of the baseline is adjusted to im-
prove the aesthetic quality of the visualization by decreas-
ing, on average, the magnitude of “wiggles” throughout the
visualization. The order of the streams also affects the leg-
ibility, and different heuristics can be applied, or the or-
der can be determined intrinsically from the data. Stream-
graphs have the advantage that the baseline at the “current”
time can be calculated directly from the data and baseline
at the previous time step, so accumulating new data will not
necessarily require a recalculation of the entire baseline as
data arrives. However, the optimal ordering of the streams is
likely to change over time, so an open problem is determin-
ing when reordering is necessary, and managing this change
in a way that preserves the users’ context. The visual sed-
imentation [HVFM13] technique is able to better preserve
the user’s context by retaining the old data and by using an
integrated encoding approach, but a large number of changes
happening simultaneously can lead to change blindness due
to the rapid transition between tokens and sediments.

Matrices and heatmaps [CLS∗12,Riv14,LB14,KBMK10]
are used to reveal relationships between pairs of variables in

multi-dimensional data by mapping each variable to a spa-
tial dimension to produce an image, and encoding the data at
that point in the image with an appropriate color. Though it
is common for the encoded variables to be continuous, many
cases also exist where variables are categorical, as occurs
in combinatorial data analysis. In such cases, the order of
the rows and columns is arbitrary, but can have a significant
impact on the usability of the visualization. The technique
of reordering matrices to reveal patterns (which typically
emerge as block diagonal structures) is known as matrix se-
riation [Lii10],

The optimal ordering of a matrix is likely to change as the
underlying data changes. To the best of our knowledge, the
visualization community has not explored matrix reordering
in a streaming or dynamic environment. Similar to dynamic
graph visualization and PCPs, questions arise such as: when
should the matrix be reordered, and how does one compro-
mise between minimizing the amount of change in the visu-
alization and revealing interesting structures?

6. Research Directions for Addressing Gaps

Based on our survey and analysis presented in Sections 4 and
5, we reflect on the gaps in the state of the art in streaming
data visualization and potential research directions that can
help address these gaps.

Role of Visualization in Situational Awareness (SA): We
found very few papers addressing the goal of achieving sit-
uational awareness for analysts using visualization. Cutting
across various domains like cyber threat mitigation, or use
of social media for emergency response, there is an urgent
need for analytical tools that can be leveraged by analysts
for achieving situational awareness. The opportunities for
visualization and visual analytics in this regard were also
highlighted in the visual analytics arena [TC06].

As mentioned earlier, SA involves dynamic reasoning
over emerging streaming patterns while projecting the impli-
cations of these patterns on the future for decision-making.
We posit that building exploratory, faceted visualizations
on top of the integration of heterogeneous streaming data
will be an important research direction towards this end.
While such visualizations have been used for event detec-
tion [DGWC10], faceted displays can also help the analyst
achieve situational awareness.

Task Models for Streaming Data: Our second finding was
that there is a lack of systematic approaches towards trans-
lating high-level streaming data analysis goals into con-
crete visualization tasks. In this paper we have differenti-
ated among three high-level goals: SA, Mon, and ET. We
found that most papers explicitly address trend and anomaly
detection tasks in a monitoring context. As mentioned by
MacEachren [MJR∗11], SA involves complex information
foraging and sense-making tasks. However, there is little in-
trospection on the instantiations of these tasks that need to be
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accomplished for reasoning, and exploring the implications
of change in a streaming context. We also need to understand
the varying levels of task complexities for a human analyst,
as these tasks can often be demanding and lead to significant
cognitive load [Lav05].

We posit that task models for streaming data need to be
developed for a nuanced analysis of the low-level tasks an
analyst has to perform in different scenarios. These will also
be helpful in understanding how to leverage relevant re-
search areas in visualization to solve streaming-related prob-
lems. For example, it has been shown that high-resolution
displays are more effective when analysts have to per-
form complex sense-making tasks for synthesizing multi-
ple pieces of information [AEN10]. Formal task models can
help users bridge these gaps.

Handling Inattentional Blindness: We also found that the
design space of visually encoding change needs to evolve
for addressing the various streaming-specific challenges.
Streaming changes are often unpredictable and bursty: pat-
terns may appear and disappear at a later time, they can
rapidly change across subsequent time steps, or their updates
can vary based on different domains. In the face of such data,
an important research problem that needs to be addressed is
the problem of inattentional blindness on the human side.
While change blindness can happen due to velocity of the
data that is too high for a human observer to detect a change,
high velocity coupled with high volume of changes can lead
to important patterns escaping human attention. Since a data
stream is constantly evolving, human analysts may struggle
to pay attention to important states or transitions and this
can lead to inattentional blindness [MSCS05]. This is espe-
cially relevant for the active monitoring task [MR98], where
visualizations need to adapt for engaging analysts about the
most salient changes in the system. Healey et al. [HE12] has
pointed out the need to leverage the pre-attentive properties
of retinal variables while designing visualizations to encode
change. Effective use of color, motion etc., can effectively
capture human attention, which is especially needed in the
case of monitoring tasks. Related research areas where hu-
man reaction time in response to dynamic data [MDH95] has
been studied, can be utilized for addressing the problem of
inattentional blindness.

Change Presentation Versus Exploration: In many of the
papers we surveyed, the visual encoding is an output of an
underlying computational model that detects and quantifies
the significant changes in the evolving patterns. In scenar-
ios like situational awareness, it is important to present these
patterns in a transparent manner so that the key insights can
be efficiently discovered by the analysts. The goals of such
presentation-based encoding can be very different from pure
exploratory visualization encoding, as has been highlighted
in the evolving research area of presentation-oriented visual-
izations [Kos16]. As pointed out by MacEachren [MJR∗11],
the data needs to be presented at appropriate levels of ab-

straction for the user to shift between different perspectives
about the data. This is especially needed for complex sense-
making tasks when an analyst is aiming for building sit-
uational awareness about the stream by understanding the
causes and implications of the changes. However, the un-
derstanding behind the building blocks of such abstraction-
based design is still in its infancy. Even an abstract repre-
sentation has to generate enough confidence in an analyst
to inspire confident decision making by highlighting the un-
derlying causalities of the visual patterns. An important di-
rection will be to investigate what design criteria should be
used for generating presentation-oriented visualizations that
effectively summarize and communicate important changes
and the relevant context to the user.

Handling Uncertainty due to Incremental Updates: We
found that the issue of incompleteness of information or un-
certainty in a stream has not been substantially addressed
in the visualization design phase. Often incremental ap-
proaches are used that incorporate information as it becomes
available [Gam10] and this implies that the mental model
of the analyst has to constantly adapt to the temporally
evolving information. While machine-level pre-processing
like binning, clustering, or use of sliding windows have
been used, related research areas like incremental visual-
ization [GFWS96, AS13] can be leveraged for designing
and evaluating visualizations that handle irregular updates.
Such incremental visualization will be needed to adapt to the
changing frequency of data updates, handle bursty data, and
still preserve the mental map of users and the context of past
information. An open issue for incremental visualizations is
that analysts might not be confident while making decisions
due to the uncertainty caused by partially available infor-
mation, and that can lead to a lack of trust [FPD12]. Novel
incremental visualizations of the data [KBK11] that inform
the analyst of both the uncertainty in the visual representa-
tion, as well as the context of the changes, can help bridge
this gap between analytical uncertainty and trust.

Evaluation Studies, Metrics, and Benchmarks: A signifi-
cant gap in streaming data visualization research is the lack
of formal evaluation methods for qualitatively or quantita-
tively comparing the various design trade-offs [DPW∗15].
We posit that not only do we require formal approaches like
design studies with domain experts and controlled user stud-
ies by simulating or in actual streaming environments, we
also need to establish new metrics based on the design trade-
offs, some of which were described in Section 5. For ex-
ample, in monitoring scenarios with high-velocity data, user
engagement can be an important metric. The trade-off there
is that human attention might be fixated on one set of pat-
terns, while missing another set of patterns due to inatten-
tional blindness. The issue of change blindness should also
be investigated further: what metrics do we use to measure
the effect of the time encoding strategies on change blind-
ness?
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Related areas of research that can be leveraged towards
building such visualizations are metrics like memorabil-
ity [BVB∗13]. In the face of rapidly changing data and con-
text, memorable visualizations can help analysts quickly re-
call past patterns and enable them to act on the currently
observed patterns. Tasks where the search targets are not
clearly defined, can benefit from explicit design criteria for
increasing the memorability of key temporal trends and
anomalies.

7. Conclusion and Future Work

We have presented a survey and analysis of the state of the
art in streaming data visualization, by focusing exclusively
on the relationship between the design space and complex-
ities of change perception. In the process we have looked
at how the different change dimensions such as frequency,
amount, uncertainty, and complexity are accentuated by the
velocity and volatility of data across common streaming
domains, and affect human perception. We mapped these
data-oriented problems to domain-specific goals for under-
standing challenges that domain experts face while analyz-
ing streaming patterns. To meet these challenges visualiza-
tion techniques have evolved over the years and our survey
analyzed how well different encoding strategies are able to
address the human factors. In turn, our analysis revealed sev-
eral design challenges and trade-offs that can eventually be
synthesized into a set of criteria for effective streaming data
visualization design.

We believe that the findings and gap analysis in our study
can be leveraged for developing a sustained research agenda
around investigating how visualizations can better facilitate
change perception in a streaming environment, and how dif-
ferent views can be integrated to provide a holistic perspec-
tive about the stream. The research agenda will be comple-
mentary to our recent focus in areas of stream data min-
ing and big data visualization, and potentially lead to ef-
fective integration of automated methods and perceptually
motivated visualization techniques for human-in-the-loop
streaming data exploration.
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[JFSK16] JAÌĹCKLE D., FISCHER F., SCHRECK T., KEIM
D. A.: Temporal mds plots for analysis of multivariate data.
IEEE Transactions on Visualization and Computer Graphics 22,
1 (2016), 141–150. 13

[JLSW10] JAJODIA S., LIU P., SWARUP V., WANG C.: Cyber
situational awareness, vol. 14. Springer, New York, NY, 2010.
3, 5

[Joy09] JOY K.: Massive Data Visualization: A Survey. Math-
ematics and Visualization. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009. 1

[JS91] JOHNSON B., SHNEIDERMAN B.: Tree-maps: a space-
filling approach to the visualization of hierarchical information
structures. In IEEE Conference on Visualization (1991), pp. 284–
291. 14

[KBK11] KRSTAJIC M., BERTINI E., KEIM D.: Cloudlines:
Compact display of event episodes in multiple time-series. IEEE
transactions on visualization and computer graphics 17, 12
(2011), 2432–2439. 16
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