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Abstract
Real-world systems change continuously. In domains such as traffic monitoring or cyber security, such changes occur within
short time scales. This results in a streaming data problem and leads to unique challenges for the human in the loop, as analysts
have to ingest and make sense of dynamic patterns in real time. While visualizations are being increasingly used by analysts to
derive insights from streaming data, we lack a thorough characterization of the human-centred design problems and a critical
analysis of the state-of-the-art solutions that exist for addressing these problems. In this paper, our goal is to fill this gap by
studying how the state of the art in streaming data visualization handles the challenges and reflect on the gaps and opportunities.
To this end, we have three contributions in this paper: (i) problem characterization for identifying domain-specific goals and
challenges for handling streaming data, (ii) a survey and analysis of the state of the art in streaming data visualization research
with a focus on how visualization design meets challenges specific to change perception and (iii) reflections on the design
trade-offs, and an outline of potential research directions for addressing the gaps in the state of the art.

Keywords: information visualization, visualization, human factors, interaction, visual analytics, visualization

ACM CCS: Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics:] Picture/Image
Generation—Line and curve generation

1. Introduction

Real-time data streams pose unique challenges for human-in-the-
loop data analysis processes. Monitoring heterogeneous streams for
emergency response or building situational awareness about poten-
tial cyber attacks are complex and demanding analytical tasks. In-
formation visualization techniques are being widely adopted in such
scenarios for helping analysts detect and synthesize fast-changing
patterns and keep their mental model about the data in sync with
the evolving stream. A key challenge in streaming visualizations is
in presenting salient changes to the data in such a way that analysts
can understand the context and relevance of the changes, and reason
about their causes and implications in real time (Figure 1).

The field of streaming data visualization is maturing quickly,
with a number of techniques being developed for event detection,
handling text streams, analysing social network data, etc. However,
there is a need to develop a deeper understanding of how human
perception and cognition can cope with complex changes in contin-
ually evolving data streams. Despite our high perceptual bandwidth,
human attention span is limited. This implies that visualizations not
only need to adapt to the fast rates of data streams but also need to
pre-attentively present and emphasize salient changes by updating

the underlying data through optimal encoding strategies. Two open
questions in this context are: (i) How does the state-of-the-art
streaming visualization design address these challenges in change
perception? (ii) Can we systematically identify goals, tasks and
related design challenges for improving upon the state of the art?

To address these questions, in this paper, we look at the streaming
problem through the lens of perceptually motivated design prob-
lems for streaming data visualization. Existing surveys on state-
of-the-art streaming data analysis have focused on techniques for
mining patterns [ILG07] or methods for addressing the problem
of scale [BHKP10, Joy09]. Researchers have also looked at the
challenges for developing visual analytics methods [MFK12], as
visualization techniques alone might not be able to solve many
challenges associated with interactive streaming analysis at scale.
In a complementary approach to these studies, we aim to understand
the human-centred streaming-specific goals cutting across different
domains, how they can be translated into visualization tasks, and
how state-of-the-art visual representations are adapted to influence
change perception in high-velocity streaming environments.

To this effect, we have three specific contributions in this
state-of-the-art report. First, we describe the streaming-specific
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Figure 1: Mapping properties of streaming data to challenges in
change perception. In addition to volume and variety that charac-
terize much of the modern real-world data, velocity and volatility
are key attributes of streaming data. While high-velocity data lead
to frequent updates that are hard for a human to track, volatility
of the data implies unknown baseline behaviour that can make it
difficult for analysts to understand the causes and implications of
the changes.

analysis requirements across different domains that can be synthe-
sized into high-level goals and visualization tasks. Second, we study
the mapping between these goals and the design space of informa-
tion visualization techniques developed for handling data streams.
In the process, we highlight how machine-centred data transfor-
mations and human-centred design approaches have been used and
provide a comparative analysis of these approaches. Third, we anal-
yse the design challenges and trade-offs in a streaming context, the
gaps in current research, and identify research directions that can
address these gaps.

2. Methodology

Streaming data poses challenges for both automated methods like
data mining and machine learning for extracting key patterns, and
for visualization techniques that communicate the changing patterns
to the analyst. In this section, we define the scope of our work with
respect to previous research and describe the analysis workflow that
helped us critique the state of the art in streaming data visualization.

2.1. Definition and scope

We adopt the definition of streaming data as proposed by Babcock
et al. [BBD*02], where a stream is defined to be a continuous
flow of data, where the system has no control over the volume
of the arriving data or the number of updates, and only a small
fraction of the whole stream is archived at any point of time, while
the rest is discarded. These properties pose challenges for analysts

observing the streams, who have to detect and understand fast-
changing patterns and their implications in a dynamic environment.
In this paper, we restrict our scope to understanding how streams
influence change perception through visualizations. The challenges
for streaming data for automated methods such as data mining or
machine learning are outside the scope of this work, and can be
found in other literature surveys [GZK05, Gam12].

A streaming visualization is one which adapts to the continuous
flow of new data and follows certain strategies to display salient
changes in the context of the past data. These strategies entail
adjusting the encoding properties of static visualizations, such as
the choice of visual variables or layouts, adding new elements to
or removing old elements from the visualization as necessary, all
while appropriately conveying changes in the underlying data to
the end user. We do not consider streaming visualization techniques
to have a new kind of design that is different from the design of
static visualizations, instead, they build on the existing tenets of
information visualization design principles. For this reason, the
field of streaming data visualization also overlaps with many related
research areas in visualization, such as time-series visualization,
dynamic network visualization and event detection techniques.
What differentiates streaming visualizations from visualizations of
dynamic or time-oriented data lies in how the visualization is to
be used for real-time change perception. Streaming visualizations
are characterized by needing a more immediate decision or action
from the user, which often rules out batch-oriented analyses and
traditional exploratory tasks.

Researchers have surveyed visualization techniques like dy-
namic graphs [BBDW14] and those applicable to unstructured
data [WSJ*14]. Our goal in this paper is to go beyond specific tech-
niques or data types and focus on the challenge of letting human
analysts efficiently and effectively perceive changing patterns and
derive streaming insights [EPC14]. We investigate how strengths
and limitations of the human perception system influence real-time
data visualization tasks and techniques, and reflect on the outstand-
ing research challenges in this regard.

2.2. Analysis workflow

When we started collecting papers related to streaming data vi-
sualization, we realized that unlike the other more mature areas
of visualization research, such as techniques for high-dimensional
or temporal data analysis, the area of streaming data visualization
lacks a thorough characterization of the problems and an analysis
of the existing solution space. This led us to develop a three-step
workflow (Figure 2) as part of our methodology, including a prob-
lem characterization of domain-specific goals, their translation and
mapping into visualization tasks for understanding change (state of
the art) and an analysis of the visualization design space for change
perception and their gaps and challenges. We describe them below:

Problem Characterization: This phase in our study (Section 3)
was inspired by the domain and data characterization phases of Mun-
zner’s nested model for visualization design [Mun09]. We identified
key domains in which streaming data analysis is an integral part by
looking into past literature on streaming data analysis in the re-
search areas of visualization, data mining and machine learning.
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Figure 2: Our workflow was aimed at characterizing the human-centred challenges for streaming data analysis, mapping those to the
landscape of existing techniques and models through a critique of the state of the art, and presenting an analysis of our findings reflecting on
design trade-offs and future research opportunities.

We leveraged the experience of two co-authors on this paper, both
of whom have more than 15 years of experience in visualization and
visual analytics, for grouping these domains based on similarity of
the intended domain-specific goals. Next, we studied the literature
related to the domain-specific goals and tasks in these domains. For
example, for research related to cyber intrusion detection, we looked
at survey papers that provide a descriptive summary of the cyber
data analysis goals [JLSW10]. This helped us distill a set of high-
level goals and tasks based on which streaming data domains can be
grouped, characterized and supported by visualization techniques.
The outcome of this process (Figure 2) was a characterization of
the complexity of streaming data and the associated goals and tasks
across different domains.

Survey of the State of the Art: In this phase (Section 4), we
first collected research papers related to streaming and dynamic
data visualization, by focusing our search on leading visualization
publications from the past 20 years. These included proceedings of
the Information Visualization Symposium/Conference, and journals
such as IEEE Transactions of Visualization and Computer Graph-
ics (TVCG), Computer Graphics Forum, ACM CHI Conference and
IEEE PacificVis Symposium. We initially collected a list of papers
by searching with keywords ‘streaming’, ‘dynamic’ and ‘real-time’.
Starting from this initial seed, we also looked into their citations
and included relevant papers from other venues. We noted the type
of visualization technique or model, the evaluation strategies and
the key contributions of each paper for streaming data analysis.
In parallel, we investigated the literature on human perception and
cognition for identifying key visualization design challenges rel-
evant to real-time assimilation of streaming patterns. Examples
of such papers included those related to change perception and
blindness [NHT01, ROC97], attention deficiency of human ana-
lysts under load [Lav05, MR98, MSCS05], memorability criteria
for visualizations [BVB*13] and general principles of human per-
ception as applicable to visualization [HBE95]. Using this analysis,
we described each paper based on how they addressed human-
centred and machine-level problems and solutions for streaming

data. The outcome of this phase (Figure 2) was a set of commonly
used techniques and a systematic understanding of how specific
human-centred challenges are addressed through the streaming vi-
sualization design space.

Reflection on Gaps and Challenges: In this phase, we synthe-
sized our findings by analysing the gaps in the state of the art by
analysing the perceptually motivated challenges and design trade-
offs for handling change sensitivity of different visual representa-
tions (Section 5). This was followed by weighting these perceptually
motivated challenges based on the high-level goals and tasks. This
was because only a subset of design challenges are relevant for a
certain goal and it was important to identify them for guiding visu-
alization design. We focused our discussion based on the existing
streaming visualization techniques and also based on techniques that
can be potentially applied to address design challenges in a stream-
ing scenario. We describe the different design trade-offs based on the
visualization tasks and high-level goals. We draw connections with
related research areas that can be utilized for further exploration
and evaluation of these trade-offs. Finally, we conclude by pointing
out the outstanding gaps (Section 6) and the associated research
directions that can be pursued for addressing those challenges.

3. Problem Characterization

In this section, we characterize the problem of human-centred
streaming data analysis through two key steps: (i) analysing the
complexity of streaming data and its implications on change per-
ception (Figure 1), and (ii) identifying key domains that involve
streaming data reasoning [DVCVHF09] and cross-cutting high-level
goals of domain experts (Figure 3).

3.1. Streaming data-driven change perception

Streaming data are characterized by its continuous flow [BBD*02]
and are often distinguished by its high velocity and volatility
as compared to static data sources. As shown in Figure 1, the
four dimensions of streaming data: volume, variety, velocity and

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



A. Dasgupta et al. / Human Factors in Streaming Data Analysis 257

Velocity Volatility Representative Scenario

What are the signatures of threats and how can they 
be mitigated?

Domains

Emergency Response

Cyber Threat Mitigation

Stock Market Analysis

Social/News Media

Simulation Modeling

Fraud Detection 

In these particular geographical areas what are people 
talking about?

Compared to the transaction history, is this a fraudulent  
transaction?
How to reset the model parameters to get  better simulation 
performance?

Main Challenge for 
Analysts

Reason about changes based 
on unknown or evolving 
baseline behavior.

Detect key changes that 
deviate from baseline behavior.

Apply heuristics to determine 
meaningful changes.

Use historical context and 
current data to decide on 
actions.

How many nodes are currently affected?Cyber Intrusion Detection

Which areas affected by flood need immediate action?

Are all flight paths adhering to the plan?

Is this a significant event compared to the past?

Air-Traffic Control

Figure 3: Illustrating the relationships between complexity of streaming data and analysis scenarios across different domains. High velocity
and volatility of streaming data have posed unique challenges for an analyst. For different combinations of velocity (high, low) and
volatility (high, low), we highlight the domains, representative scenarios and analysis goals.

volatility [ZE*11, KŽB*14] have unique implications for the per-
ception of change for an analyst in a dynamic environment.

Volume of changes in streaming data is quantified by the number
of updates to the existing data and velocity is determined by the fre-
quency of the updates. Large numbers of updates at a fast rate make
it difficult for analysts to keep track of changes in a system. The
frequency of updates can also be unpredictable, where there can
be an influx of bursty data within a short span of time. In all
these cases, an analyst tries to understand: what are the frequent
changes in the system. In domains that require real-time monitor-
ing for immediate decision making, like in air traffic control or
emergency response, analysts have to be constantly careful not to
miss any actionable changes and they typically depend on alerts
from the system for making them aware of changes that need
attention.

Variety of streaming data is characterized by the underlying het-
erogeneous data sources, leading to complex changes resulting from
a combination of structured and unstructured data (e.g. social me-
dia). In such cases, analysts have to make sense of change semantics,
i.e. changes that are meaningful and significant, by understanding
the context provided by the data.

Volatility of streaming data is mainly caused by unknown base-
line behaviour of the attributes of data that are being tracked. As
described by Krempl et al. [KŽB*14], ever-changing patterns in a
stream can cause a change of target variable or feature availability
to explain the changes, and this can lead to change uncertainty. In
such cases, analysts need help from the system in understanding the
causes of the changes and what they imply for the immediate future.
Examples of such changes are drifts and concept evolution in social
networks. In domains such as social network analysis or cyber threat
detection, such volatile data imply that analysts are dependent on
the system for summarizing and semantically integrating multiple

pieces of information at different instances during the stream; other-
wise, such information might become unusable due to the evolution
of the stream.

Examples: In Figure 3, we provide a high-level overview of
the different domains that can be grouped based on the velocity
and volatility of the data and provide representative scenarios for
each. We categorize velocity into three classes based on the general
frequency of the updates.

In the case of high-velocity data, the update frequency is in sec-
onds or minutes, as in emergency response situations when an event
has happened and an analyst is constantly supervising a scenario.
When combined with high volatility, the main challenge for the an-
alyst is to often grapple with unknown baseline behaviour at a fast
rate. For example, the exact signatures of threats in a cyber system
might be unknown, yet streaming patterns of activities might raise
suspicion that defenders need to monitor the system and against
which they need to take preventive action. Even in emergency re-
sponse scenarios, situations are often dynamically evolving and an-
alysts need to learn and decide in real time about possible mitigation
mechanisms.

In the case of medium-velocity data, the update frequency
is generally in minutes or hours, as in the case of air traf-
fic control [LJFJ14] or stock market analysis. Combined with
medium volatility, where the baseline behaviour is mostly known,
the main challenge for an analyst is to compare evolving
changes to known baseline behaviour and accordingly decide on
a course of action. Medium- or low-velocity and highly volatile
streaming data can be found in domains such as social me-
dia or cyber intrusion detection. In those cases, although base-
line behaviour might be unknown, certain heuristics (e.g. topic
modelling in social media) can be used to provide insights into the
data.
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In the case of low-velocity data, update frequency is of the order
of hours to days, or periodic. An example scenario is fraud de-
tection while credit card monitoring, which depends on a person’s
transaction frequency. In such cases, the main goal of the analyst is
to compare current behaviour of individuals or other entities with
respect to historically known baseline behaviour and accordingly
decide whether action needs to be taken to flag anomalies or influ-
ence future patterns of behaviour (e.g. model performance during
simulation runs).

3.2. Domain-specific goals

We consider a set of common domains where analysts are faced
with streaming data such as social media, cyber security, emer-
gency response and financial domains. We selected these domains
based on their usage in streaming data analysis literature and also by
analysing the difference in goals across these domains. We aimed
for a more fine-grained analysis of goals and tasks than the one
presented by Rohrdantz et al. [ROKF11] and came up with the
following high-level streaming data analysis goals based on which
different domains can be classified: building Situational Aware-
ness (SA), Monitoring (Mon), and Event-Tracking (ET).

These domains span the three states of a data stream: past, cur-
rent and future. The different goals and scenarios are schematically
represented in Figure 4, and described below. The transition among
the past, current and future states are dependent on the analysis
scenario.

In the case of high-velocity data, where updates are of the order
of seconds or minutes, the transition between past and present is
extremely rapid and often indistinguishable to the analyst. In the case
of low-velocity data, where updates are of the order of hours or days,
there is a distinguishable past. The future state indicates a state of
the system that is a function of the current changes perceived by the
analysts and the actions taken by them to influence the outcome of
the changes. The future state is especially relevant where the analyst
wants to take an action for influencing the stream: an emergency
responder or cyber security analyst seeking to mitigate situations
that demand urgent attention and that can be resolved by their action.

The categorization of tasks ultimately helps us in identifying the
visualization-specific design challenges in a streaming scenario.

Situational Awareness (SA): In building situational awareness
analysts are mostly concerned with getting actionable insight from
the system to influence the future. We adopt Endsley’s [End95]
definition of situational awareness, which is ‘a three-part process
of perception, comprehension and projection (into the future to
make predictions) that leads to decision making and then to actions’.
The perception and comprehension task mainly involves reasoning
about the current state, followed by a projection or prediction about
the future. As noted by MacEachren et al. [MJR*11], these stages
are closely related with the visual analytic loop where sense making
and information foraging are key tasks for the analyst. The tasks can
be exploratory in nature, as the analyst is often searching for causal
relationships at different levels of detail. Exploring mitigation strate-
gies or discovering unknown signatures for defending against cyber
threats [JLSW10] or use of social media for enhancing awareness
about an emergency situation [YLC*12] are common examples of

such sense-making tasks, which generally involve highly volatile
data. Reasoning and projection are key tasks towards the overall
goal, and these tasks typically need the data to be represented at
different levels of abstraction and in coordinated multiple views for
achieving those tasks.

The SA-related analytical tasks can be synthesized into the fol-
lowing main types:

SA1: Summarize information from heterogeneous streaming data
sources for identifying causal relationships behind the
changing patterns.

SA2: Take domain knowledge into account and let analysts ex-
plore dynamic what-if scenarios.

Based on our survey, we found that very few papers (with the
exception of [Erb12, FK14, MJR*11, SBM*14]) address situational
awareness scenarios. In Figure 5, we see one such example where
interactive feature selection is used for summarizing and reasoning
purposes.

Active Monitoring (Mon): Active monitoring is the most com-
mon streaming data analysis goal where an analyst supervises a
system in real-time in the face of high-velocity data. In most mon-
itoring cases, baseline behaviour is known by the analyst and they
are aware of which changes need their attention. The problem that
the human analysts face in monitoring tasks is that due to the ve-
locity of data, in the absence of effective analysis tools, they might
miss detecting a change. Monitoring can also be combined for more
complex situational awareness tasks in domains with higher volatil-
ity, as when social network data are used for immediate emergency
response or potential cyber threats need to be flagged by cyber de-
fenders. Detection of patterns and reasoning about them in real time
are the main tasks of the analysts. Active monitoring was the most
common application scenario that we found, and the visualization
tasks involved:

Mon1: Highlight changes in the stream and communicate trends
and anomalies in the stream.

Mon2: Present salient changes that require human attention and
differentiate among small and significant changes.

Common examples of stand-alone active monitoring tasks are
air-traffic control or network intrusion detection [Axe00], where the
analysts try to detect very specific trends or anomalies and know
what they are looking for.

Event Tracking (ET): Event tracking is a goal when the current
state of the system needs to be understood in the context of the
historical information, and the analyst either wants to identify, com-
pare or retrieve events [WSJ*14]. Historical information is typically
retrieved on demand, and a computational model is integrated with
the data, with rules that flag whether an event has occurred.

Common examples are social media data analysis or fraud detec-
tion in credit card transactions. For comparing the significance of the
incoming data stream, analysts are often interested in retrieving the
history. Such event detection may also help predict future events, as
in the case of simulation modelling [SEH*15], where relationships
between model parameters and outputs can be understood based on
the definition of events. ET involves the following tasks:
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Figure 4: High-level streaming-specific analysis goals as found in the literature. The final set of goals we derived were: Situational
Awareness (SA), Monitoring (Mon) and Event Tracking (ET). Compared to SA and Mon, ET is a goal in cases where the stream rate is low,
that is, the temporal granularity of data update is of the order of days or weeks. In (a), the goals are broken down into relevant analytical
tasks, and in (b), we show the distribution of these goals in state-of-the-art techniques.

ET1: Understand the importance of current patterns based on the
past context.

ET2: Compare current events to the past ones on demand.

4. Survey of the State of the Art

Our survey (Figure 6) focused on collecting examples of visu-
alization techniques designed for addressing streaming-specific
problems and solutions. In this regard, we differentiate between
techniques developed for handling dynamic data, as opposed to
streaming data. In the case of streaming data, an analyst only looks
at a specific snapshot of the data at a particular instance of time and
data are not stored in a machine’s memory, as it is in the case of
emergency response systems. In the case of dynamic data, while the
data may be changing over time, old data can be stored in memory
and used for event detection, as in credit card monitoring. In this
section, we present an exhaustive list of real-time streaming visual-
ization techniques, and a representative sample of dynamic visual-
ization techniques which can be adapted to handle real-time streams.
We use the following heuristic to decide a representative sample:
we group dynamic visualization techniques into groups based on
the visual representations and the tasks, and randomly select one

technique that is representative of that group. For example, dy-
namic graphs form one group and papers such as [APP11, BPF14]
are representatives of that group. For a more detailed survey on dy-
namic graph visualizations, we refer readers to the STAR paper by
Beck et al. [BBDW14]. For each of the listed techniques, we study
the data-specific problems and solutions, human-centred problems
and solutions and the associated evaluation strategies. Since the
goal of this paper is to study problems and solutions specific to the
human-in-the-loop situation, we present a detailed analysis of how
streaming-specific challenges are handled by encoding strategies
and compare their advantages and disadvantages.

4.1. Machine-level problems and solutions

The nature of streaming data is to naturally accumulate with little
to no bounds, requiring visualizations to accommodate this growth.
Along with data accumulation, missing or incomplete data and het-
erogeneity of data are other problems that have been addressed in
the visualization literature [FHL10, HSP14, Riv14, WSJ*14]. As
shown in Figure 6, the following are the different data transforma-
tion strategies employed while designing visualizations for handling
these problems.

c© 2017 The Authors
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Figure 5: Designing for enhancing situational awareness [FK14] where exploratory feature selection is used for summarizing multiple time
slices. Such exploration and summarization are necessary for stream reasoning and projection of future patterns.

Binning: Roughly a third of the papers we surveyed relied on
binning. Binning is effective in streaming environments where the
volume of data is so large that representing individual records is
not practical. This technique introduces uncertainty into the visu-
alization by foregoing a direct representation of each data record
and instead representing counts of records across a set of intervals
or faceted by a categorical attribute. This allows an arbitrarily large
number of data records to be accounted for in the visualization
by communicating the shape of the distribution of records to the
user. The counts can be represented using a bar chart (e.g. spa-
tial encoding of counts across intervals) to facilitate accurate visual
comparison of counts. However, we have also observed binning
used in conjunction with a map (e.g. heatmap, calendar and choro-
pleth), where counts within geographical regions are shown, as is
the case in [FHL10]. Time discretizes in natural ways (e.g. months,
weeks and days) which can be used as bins to count records. This
technique was used in [KWD*13] with a calendar visualization to
represent the temporal intensity of tweets on a particular subject
using a calendar heatmap. Clustering and binning can be used in
conjunction when uniform discretization is not appropriate, as it
was in [SBM*14].

Age of Data: The age of the data itself can be visually encoded
for providing temporally relevant information to the user. Obvious
ways to represent the age of data include encoding time spatially
(e.g. on a timeline) or encoding age with size or colour. Making
younger data larger than older data, or giving younger data more
contrast from the background compared to older data can draw the
user’s attention towards these elements. This is helpful under the
assumption that younger data are more relevant or interesting than
older data. Below, we discuss several unique solutions to data ageing
from our literature survey.

Erbacher visualized streaming data in concentric circles, where
newly arrived data were added to the outside of the circle, giving it
more screen space [Erb12]. Conversely, less screen space was avail-
able to older data, which was assumed to be of lesser importance.
Huron et al. use a sedimentation metaphor to facilitate graceful age-
ing of data [HVFM13]. New data records accumulate on top of a

pile and form layers like sediment. As the data age, it compacts (data
records become smaller) and is eventually replaced by an aggregate
representation where individual data points are indistinguishable.
Mansmann et al. also rely on compaction and aggregation to han-
dle graceful ageing of data in their tool, StreamSqueeze [MKF12].
Newer data are shown with the most detail. As data age, it gets less
screen resolution and is moved towards the right, exhibiting less
level of detail than the new data.

Sliding Window: Many papers in our survey employ a sliding
window as a method for handling the data aggregation problem of
the stream. This is commonly implemented as an age-off policy
for the data where any data older than an arbitrary window size
of t are either archived or discarded. The visualization will often
show high fidelity and interactive views of all data younger than t

to help preserve context; however, any context older than t is not
available. In practice, the sliding window approach can be com-
bined with binning or sampling techniques, but it is common to see
integrated views (e.g. spatial encoding of time) used with a slid-
ing window, by simply sliding the view to the left (when time is
on the horizontal axis) as time elapses. The solution presented by
Mansmann et al. [MKF12] is notable because it does not employ
a fixed-width sliding window; instead, the tool maintains a repre-
sentation of all data over time. It addresses the data accumulation
problem by reducing the fidelity of the information shown as time
elapses. Newer data points are given much more screen space; older
items get less space and are eventually only are represented within a
histogram.

Sampling and Stream Steering: Sampling is a technique that
can be used when the underlying data stream contains too much
information for the back end systems to process in real time. In this
case, sampling techniques, which likely involve machine learning
models, can be used to pick and choose what data to process and
eventually show to the user. Stream steering is an emerging area of
research [FDCD12] that investigates how to allow users to influence
the sampling process. This is accomplished in [BTH*13] by allow-
ing users to create sophisticated filters that can identify interesting
documents (e.g. tweets, news articles and blog posts) for the user in
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Figure 6: Surveying the state of the art based on the visualization techniques, machine-level and human-centred problems and solutions and
evaluation strategies adopted in the papers. We focused our analysis on how human factors are addressed by the design solutions and based
on those factors we identified relevant design challenges and gaps.
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Integration (Tanahashi2015)

Superimposition (Forbes2010)

Juxtaposition (Fischer2014)

Animation (MacEachren2011)

Figure 7: Examples of time encoding strategies for streaming data visualization, which are: superimposition, juxtaposition, integration and
animation. These strategies are discussed in Section 4.2.2.

real time according to their topical content, and not just based on
keyword matching.

4.2. Human-centred problems and solutions

In this section, we first discuss the human-centred perceptual design
challenges by linking them to the properties of streaming velocity

and volatility. Next, we discuss the different time encoding strate-
gies we found in the literature that are leveraged to handle these
challenges.

4.2.1. Perceptually motivated design challenges

In our survey, we found three perceptually motivated design chal-
lenges that are explicitly or implicitly handled in the papers.
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Context Preservation: In streaming scenarios, the perception of
change is often influenced by the context. For example, a feature
subset might be predictive of a particular target variable, but when
target variables change, so do those subsets. In this case, the tar-
get variable provides the context for the importance of the feature
subsets. Preserving the context is most important for event track-
ing scenarios [BS04, BPF14], where there is a need to capture the
provenance and larger impact of data at different instants of time.
With respect to streaming data, this often means preserving how the
data have changed over time and even supporting the recall of older
information which has suddenly regained relevance.

Mental Map Preservation: Changing patterns in a stream can
be complex, and that can affect the stability of a visual display.
If the magnitude of changes between time steps is too large or
too complex, analysts may find it difficult to preserve their mental
map about emerging patterns [FHL10, HEF*14]. This is especially
important for building situational awareness and exploring what-if
scenarios in the face of volatile data. In such cases, the analyst is not
always sure which patterns to look for, and what is causing them. To
preserve the mental map, it is important for visual representations to
optimize visual quality of a display, while at the same time provide
multiple perspectives into the data for the analyst’s mental model to
be in sync with the evolving stream.

Change-blindness Prevention: The change-blindness problem
is caused by high frequency and large number of changes in the
stream, where in absence of pre-attentive visual cues [ROC97], the
human vision system is unable to perceive changes even when able to
see them. Ideally, a streaming visualization system should leverage
the pre-attentive nature of visual variables for encoding changes in
the data. These changes must either be analysed for importance and
selectively displayed or the design of a visualization must account
for constant visual adjustment. Efforts to address the prevention of
change blindness often focus on reducing visual clutter so as to
make changes visually salient and visualizations with explicit time
encoding as in ThemeRiver [HHN00]. In some cases, even explicit
representations of time are augmented with eye-catching anima-
tions or other decorations to mark changes [CAHF14]. Prevention
of change blindness should be a key design goal, especially in the
case of active monitoring scenarios. Even outside the streaming
scenario, researchers have aimed to characterize visualization tech-
niques based on their tendency to cause change blindness [NHT01].

4.2.2. Time encoding

All streaming visualizations result from design decisions related to
how to handle time, or more specifically, that the data of interest
will change over time. Our survey revealed four design patterns
(Figure 7) for handling time for streaming data visualization. Draw-
ing from the nomenclature introduced by Javed et al. [JE12] for static
composite visualizations and later adapted by Beck et al. [BBDW14]
for dynamic graph visualization, the four design patterns we iden-
tified for handling time in streaming visualization are: integration,
juxtaposition, superimposition and animation.

To help illustrate these concepts, we will use a ‘toy’ streaming
data example of visualizing the trajectory of a falling ball in real
time (Figure 8). Throughout these examples, we use the term ‘model

Figure 8: Illustrating the different time encoding techniques we
found in the literature using a falling ball example, where T1, T2
and T3 denote the different states of the ball.

state’ to describe the set of salient features and corresponding values
that need to be communicated to the user to support the user’s
streaming analytics task. In the falling ball example, the model
state is the height of the ball. Integration and juxtaposition map
time into space; integration does so explicitly, by definition, and
juxtaposition does so implicitly by ordering views chronologically.
Animation shows only one version of the model state, which is
updated in place, whereas the other three methods show copies of
the model states at different times. Usually, animation, juxtaposition
and superimposition will maintain the same scaling for colours and
scales in order to facilitate accurate comparison across different
times, and to preserve the mental map.

Animation: If we visually encode only the current height of the
falling ball, and update this visualization as the position changes, we
are using animation. The ball is always represented as a single entity
in the visualization. Animation is a commonly used design pattern
in streaming visualization, apparently because it is often straightfor-
ward (from an implementation standpoint) to use animation to adapt
a static visualization to a streaming context. If a static visualization
already exists that is suitable to communicate the model state within
a snapshot or time window, then that visualization can be updated
‘in place’ to reflect the current model state. If the frame rate of the
visualization is high enough, and the model state changes smoothly,
then this directly results in an animation effect. When this is not
the case and updates to the model state occur at longer intervals, in-
terpolation can be used so that visual elements transition smoothly,
which might help preserve the user’s mental map. Animation alone
makes comparisons between the past and the present awkward for
the user (e.g. requires playback and seeking back and forth), which
can cause problems with preserving the user’s context. For moni-
toring, animations might be most effective as minor changes can be
relevant [Blo05].

Integration: If we show the position of the ball as a function of
time in a single visualization, such that time is spatially encoded,
we are using integration. A new visual object representing the ball
is added to the visualization for each new time frame. The visual
‘copies’ of the ball can be connected (i.e. integrated) using lines to
communicate they are the same object. When the position of the
ball is drawn as a continuous function, this is often referred to as a
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‘timeline’ or ‘space-time plot’. We consider these special cases of
the use of integration for streaming data. Integrated streaming visu-
alizations generally should explicitly handle data age-off. As time
elapses, more and more copies of the model state will accumulate in
the visualization because new copies are being added during each
frame, and old objects that are no longer relevant should be removed
to reduce clutter. A common solution is to remove all visual encod-
ings of the model state older than some arbitrary time duration. In
cases where time is encoded on the horizontal axis, this manifests
as a sliding window effect, which is a commonly used solution.
Integration can be helpful in preserving context because the present
model state can be more easily contrasted against past states versus
animation.

A unique example of integration is the use of storylines to con-
vey changing relationships over time [THM15], which is shown in
Figure 7. In this case, the visualization is built of alternating repre-
sentations of the relationships within a time window, and integrating
lines connecting adjacent time windows. The integrating lines are
styled to appear identical to the lines within the time window to give
the appearance of a continuous timeline for each ‘character’ in the
storyline.

Juxtaposition: If we were to repeatedly take a snapshot of the
ball as it falls, and then arrange those snapshots according to time
(similar to a comic strip), we would be using juxtaposition. Similar
to integration, an additional visual representation of the model is
added to each frame. In this case, juxtaposition can be similar to in-
tegration, however, we consider juxtaposition to employ an implicit
spatial encoding of time, whereas it is explicit in the case of inte-
gration. Juxtaposition often employs small multiples and is used in
place of integration in a streaming context when views of the model
state are too complex or challenging to be combined into a single
view.

For example, juxtaposition was used in [FK14] to communicate
how topics (distribution over words, represented as a word cloud)
evolve over time; an example of this is shown in Figure 7. We see
juxtaposition used frequently for dynamic graph visualization due to
the abundance of effective open-source graph layout algorithms for
static graphs. A new view of the graph can be generated each frame
using static methods, and then juxtaposed with the previous frames
to show the change. Graphs during different time windows are drawn
in separate, adjacent views to help the user understand how the topol-
ogy of the graph is changing over time [BPF14, RM13]. Dynamic
graph researchers hypothesize that minimizing changes across jux-
taposed views over time is important to preserve the user’s mental
map, which should improve their ability to understand change over
time in these data sets [APP11].

Superimposition: If we took a multiple exposure photograph of
the falling ball (from the previous example), we would be employ-
ing superimposition. Superimposition compresses the model state
at different times onto the same view using the same visual encod-
ing. While we no longer would have an implicit or explicit spatial
encoding of time, time can be communicated using other retinal
properties such as colour or size. Superimposition can help with
preserving context and preserving the mental map, because the vi-
sual encodings are consistent over time, and because past and present
are comparable in the same view. Furthermore, superimposition can

be more space-efficient than integration and juxtaposition due to the
reuse of space. Because views of the model state are closer together,
making comparisons between past and present can be more efficient
with superimposition as compared to the other methods discussed.
A trade-off is that superimposed views will likely suffer from visual
clutter and over plotting more readily than the alternatives.

Our survey revealed that superimposition was the least commonly
used technique for handling time in streaming data. This was surpris-
ing given that this technique can be fairly easily implemented from
a pre-existing static visualization, and has the advantage of showing
data in context, as well as helping to preserve the mental map. Ani-
mation combined with superimposition (e.g. by showing the recent
paths taken) is used in [FHL10] and [Moe04]. In [BSH*16], super-
imposition is used by projecting high-dimensional data at different
time windows into a common two-dimensional space. Different in-
stances of the model state are represented as single points to allow
the user to see the relatedness of the model state over time, and detect
patterns such as oscillation, stagnation, divergence or recurrence.

4.3. Evaluation

Evaluations of the research efforts to address these streaming chal-
lenges have been diverse. In this work, we categorize evaluations
into one of several forms. Case studies involve research that is pre-
sented as proof of concept and applied to a particular domain. During
a case study, the application may have been provided to users not
associated with the research team, but was done so without con-
trolled tasks or conditions. User studies evaluate prototype research
under controlled conditions with participants to produce quantita-
tive results. Expert studies constitute evaluations which make use
of presented research as a prototype and include review by domain
experts not associated with the presenting researchers. Finally, tech-
nical benchmarks involve demonstrating the efficiency or data han-
dling abilities of a prototype or algorithm without consideration of
users or tasks. As shown in Figure 6, the problems of data accumu-
lation, heterogeneous and missing data are lacking in user-oriented
evaluations. With the exception of [CAHF14] and [SBM*14], most
research relies on technical benchmarks and demonstrations without
determining if the visualization strategies are, in fact, effective and
supporting user tasks. Conversely, most work addressing change
blindness, context preservation and mental map preservation relies
on at least expert feedback or case studies to determine efficacy. In
our survey, we also found a general lack of quantitative user studies
that either simulate real-world streaming environments or let do-
main experts perform certain tasks in a controlled setting. For some
of the quantitative studies, we also found update rates of the stream
to be of the order of several minutes, which might not be a real-
istic scenario, especially where active monitoring of high-velocity
streams is necessary.

In Figure 9, we describe how well human-centred design chal-
lenges are addressed by the techniques in terms of scalability,
expressiveness [Mac86] for depicting change, change-blindness
prevention, context-preservation and mental-map preservation. Vi-
sualization types highlighted in bold have been explicitly applied
in a streaming context. Connected scatter plots [HKF16], slope
graphs [Sch14] and parallel coordinates [DKG15] can be used for
encoding change, but have not been applied on streaming data.
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Figure 9: Investigating the design-trade-offs for the common streaming data visualization techniques that we surveyed. The visualizations
that are bold highlighted have been applied in the context of streaming data, while the other visualizations, such as the connected scatter
plot [Kos16], slope graph [Sch14] and the parallel coordinates, have mostly been applied in the context of static data analysis.

5. Analysing Design Challenges and Trade-Offs

In this section, we analyse the change sensitivity of the common
streaming data visualization techniques. We classify the visualiza-
tions based on two encoding properties: which visual variables in-
duce a perception of change in response to a stream, and what
type of time encoding the visualization employs (Figure 9). Based
on this classification, we identify the merits and drawbacks of the
techniques. For such identification, we consider two more change
sensitivity criteria in addition to the criteria of context preservation,
mental-map preservation and change-blindness prevention. These
are: scalability of a technique, which determines how a large num-
ber of changes can be accommodated, and expressiveness [Mac86],
which determines if the salient changing patterns are clearly com-
municated to the analyst. To simplify our analysis, we identify the
main advantage of a technique and its main disadvantage. We recog-
nize that a more nuanced analysis might be necessary and a weighted
score might be ideal in classifying the techniques, but we leave that
for future work, as an extension to the analysis presented here. In ad-
dition to the techniques found in the survey, we analysed techniques
such as slope graphs [Sch14], connected scatter plots [HKF16] and

temporal MDS plots [JFSK16] that are relevant to the time encod-
ing strategies and can be applied in the context of streaming data
visualization.

5.1. Change in position

Encoding change through position is the most common strategy
used across many techniques. In a basic line graph or in timeline
plots [SRHH16, DFSK16, GS14, SBM*14], time is encoded on one
of the axes and superposing lines can encode the temporal trajec-
tory of a stream. Line graphs are highly expressive and an optimal
choice for showing temporal trends as they can communicate chang-
ing patterns quickly and effectively. For univariate data, especially
in scenarios where analysts are looking for specific trends (e.g. vari-
ation in trajectories for air-traffic monitoring) as in the case of active
monitoring, there are few better encoding choices than superimpos-
ing lines. However, in the presence of bursty data, a rapid change
in scale of a variable can affect how the magnitude of change is
perceived. Also, for this approach, encoding change for multiple
variables and a high volume of data can be challenging due to a lack
of scalability.
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Connected scatter plots [HKF16] and slope graphs [Sch14] are
techniques used by the news media for integrating temporal in-
formation within a two-dimensional plot. While they are able to
preserve the past context directly, and can be effective in historical
retrieval tasks, they can be difficult to read and suffer from lack of
expressiveness about key trends and anomalies. These plots are not
suitable in monitoring situations, but might be used for reasoning
and projection tasks for building situational awareness.

Parallel coordinate plots (PCPs) represent multivariate data by
encoding samples as contiguous line segments connecting pairs of
variables assigned to vertical axes [ID91], and time can be an addi-
tional axis [HW13]. In a PCP, the ordering of the axes determines
which n − 1 out of a possible n·(n−1)

2 axis pairs are visible. A good
ordering of the axes might reduce clutter and reveal patterns (e.g.
clusters, trends) that are not otherwise visible with a different axis
order. Many quality metrics for PCPs have been proposed with the
assumption that an axis ordering that optimizes a given metric will
improve the user’s performance in certain analytical tasks [DK10].
PCPs have been used to show how a collection of multivariate
objects changes over time by mapping time to the user’s time
(i.e. animation) [BS04, BBP08, The06]. In a streaming context,
PCPs could be used to show recently collected samples (e.g. sam-
ples no older than t , or the k most recent samples). To our knowledge,
there has been no demonstration or systematic evaluation of a tech-
nique to automatically reorder PCP axes in a dynamic or streaming
context and preserve the mental map of a user at the same time.

5.2. Change in layout

Change in position of points coupled with the change in orienta-
tion of their groupings or their connections can lead to a percep-
tion of change in the overall layout of a particular view. This is
most common in the case of two-dimensional projections of mul-
tidimensional data or node-link diagrams. Dimension embedding
techniques project high-dimensional data (e.g. multivariate or con-
nectivity data) into a lower dimensional space (usually D = 2) by
placing similar samples (e.g. nearby in the feature space) close to-
gether in the lower dimensional embedding. Juxtaposed views of
such MDS plots [WFA*03, XWR10] can be used to represent dif-
ferent slices of time. Force-directed graph drawing algorithms can
be considered a special case of this broader problem, where sim-
ilarity is a binary relation equivalent to connectivity. Preserving
high-dimensional similarity (or distance) in low-dimensional space
is usually addressed directly by an optimization algorithm (e.g.
MDS) or is an emergent outcome of the algorithm. This can help
reveal features in the global structure of the data including clusters,
holes or relationships (when attributes not used by the embedding
are encoded as shape, size or colour). The main advantage of this ap-
proach is that they are scalable with respect to large dimensionality
of the data.

When data change, the current spatial layout may become very
sub-optimal if it is not adjusted to reflect the new relationships in
the data. This problem has been explored in a streaming context
by the dynamic graph drawing community, where a long standing
hypothesis is that ‘preserving the user’s mental map’ is extremely
important [APP11, BBDW14, PHG06]. There are also examples of
MDS and related dimensional embedding techniques being used in

a streaming context [ACZ*11, WFA*03], but these approaches have
explicitly focused on preserving the user’s mental mapping as the
data change, except in the case of [GHN12] where the problem
of computing the positions of the dynamic multivariate data (i.e.
streaming text) was transformed into a dynamic graph layout prob-
lem. This illustrates the close relationship between graph drawing
and dimension embedding techniques—problems that appear to be
unsolved, yet dynamic dimension embedding techniques may have
good solutions, or at least starting points, in the dynamic graph
drawing community.

5.3. Change in retinal properties and layout

Retinal properties such as area, size, etc., have been used in sev-
eral visualization techniques for encoding change. Techniques such
as treemaps [JS91] and circle packing [WWDW06] are effective
at representing large hierarchical datasets where each element also
has a primary attribute that is encoded visually as area or size, and
other secondary attributes that can be encoded with colour, tex-
ture, etc. Updated data are generally superposed on the old data.
These general techniques use visual containment to represent the
hierarchy, and solutions generally use heuristics to quickly deter-
mine how to effectively place child elements within their parent
container. In the case of treemaps, a popular heuristic produces
squarified treemaps [BHvW00], where the aspect ratio of the ele-
ments is usually low. The circle packing algorithm tries to produce
layouts where the area of the parent circle is not much larger than the
total area of the child circles—in other words, it reduces unnecessary
whitespace.

In a streaming context, change encoding using retinal variables
and time encoding using the superposition strategy can quickly show
a large number relevant changes, leading to high scalability, but in
the presence of a high frequency and large number of changes,
analysts’ attention might not be focused on relevant changes, and
thus change blindness can occur. Additionally, small changes to the
hierarchy or primary attributes might have a large effect on the lay-
out of the visualization, and therefore the user’s perception of the
change. For example, with treemaps, the order of child nodes within
a parent is sometimes determined by the primary attribute in order
to improve the quality of the visualization. However, a relatively
small change to the primary attribute of a single node can have
a disproportionately large change to its order, which could cause
confusion and lead to change blindness. Mental-map preservation
is also a problem in this case. This problem has been investigated
and addressed using dynamic voronoi treemaps [SFL10], which are
designed to be stable against changes to the primary attribute, as
well as to zooming. Dealing with changing hierarchies in a stream-
ing context seems even more problematic, but because trees are
special cases of graphs, solutions might be drawn from techniques
for dynamic graph drawing.

5.4. Change in position and retinal properties

A combination of position and retinal properties have been used
in several techniques, and they vary based on the time encoding
strategy used. Streamgraphs show the aggregate of many univariate
time series by superposing individual time series, which are referred
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to as streams [BW08, DBH16, FMK12]. Colour is used to allow the
user to differentiate between the different streams, and to understand
how the whole is composed of the individual parts (streams) over
time. Time is usually encoded on the horizontal axis, leaving the
primary attribute of the time series to be encoded as the thickness
of the stream at that time point.

Therefore, the vertical position of a stream is dependent on the
sum of the thicknesses of all the streams below it, plus a baseline.
The height of the baseline is adjusted to improve the aesthetic qual-
ity of the visualization by decreasing, on average, the magnitude of
‘wiggles’ throughout the visualization. The order of the streams also
affects the legibility, and different heuristics can be applied, or the
order can be determined intrinsically from the data. Streamgraphs
have the advantage that the baseline at the ‘current’ time can be
calculated directly from the data and baseline at the previous time
step, so accumulating new data will not necessarily require a recal-
culation of the entire baseline as data arrive. However, the optimal
ordering of the streams is likely to change over time, so an open
problem is determining when reordering is necessary, and managing
this change in a way that preserves the users’ context. The visual
sedimentation [HVFM13] technique is able to better preserve the
user’s context by retaining the old data and by using an integrated
encoding approach, but a large number of changes happening simul-
taneously can lead to change blindness due to the rapid transition
between tokens and sediments.

Matrices and heatmaps [CLS*12, Riv14, LB14, KBMK10] are
used to reveal relationships between pairs of variables in multi-
dimensional data by mapping each variable to a spatial dimension
to produce an image, and encoding the data at that point in the image
with an appropriate colour. Though it is common for the encoded
variables to be continuous, many cases also exist where variables are
categorical, as occurs in combinatorial data analysis. In such cases,
the order of the rows and columns is arbitrary, but can have a sig-
nificant impact on the usability of the visualization. The technique
of reordering matrices to reveal patterns (which typically emerge as
block diagonal structures) is known as matrix seriation [Lii10],

The optimal ordering of a matrix is likely to change as the under-
lying data change. To the best of our knowledge, the visualization
community has not explored matrix reordering in a streaming or
dynamic environment. Similar to dynamic graph visualization and
PCPs, questions arise such as: when should the matrix be reordered,
and how does one compromise between minimizing the amount of
change in the visualization and revealing interesting structures?

6. Research Directions for Addressing Gaps

Based on our survey and analysis presented in Sections 4 and 5,
we reflect on the gaps in the state of the art in streaming data
visualization and potential research directions that can help address
these gaps.

Role of Visualization in Situational Awareness (SA): We found
very few papers addressing the goal of achieving situational aware-
ness for analysts using visualization. Cutting across various do-
mains like cyber threat mitigation, or use of social media for emer-
gency response, there is an urgent need for analytical tools that can
be leveraged by analysts for achieving situational awareness. The

opportunities for visualization and visual analytics in this regard
were also highlighted in the visual analytics arena [TC*06].

As mentioned earlier, SA involves dynamic reasoning over
emerging streaming patterns while projecting the implications of
these patterns on the future for decision-making. We posit that
building exploratory, faceted visualizations on top of the integra-
tion of heterogeneous streaming data will be an important research
direction towards this end. While such visualizations have been used
for event detection [DGWC10], faceted displays can also help the
analyst achieve situational awareness.

Task Models for Streaming Data: Our second finding was that
there is a lack of systematic approaches towards translating high-
level streaming data analysis goals into concrete visualization tasks.
In this paper, we have differentiated among three high-level goals:
SA, Mon and ET. We found that most papers explicitly address trend
and anomaly detection tasks in a monitoring context. As mentioned
by MacEachren [MJR*11], SA involves complex information for-
aging and sense-making tasks. However, there is little introspection
on the instantiations of these tasks that need to be accomplished for
reasoning, and exploring the implications of change in a streaming
context. We also need to understand the varying levels of task com-
plexities for a human analyst, as these tasks can often be demanding
and lead to significant cognitive load [Lav05].

We posit that task models for streaming data need to be devel-
oped for a nuanced analysis of the low-level tasks an analyst has to
perform in different scenarios. These will also be helpful in under-
standing how to leverage relevant research areas in visualization to
solve streaming-related problems. For example, it has been shown
that high-resolution displays are more effective when analysts have
to perform complex sense-making tasks for synthesizing multiple
pieces of information [AEN10]. Formal task models can help users
bridge these gaps.

Handling Inattentional Blindness: We also found that the design
space of visually encoding change needs to evolve for addressing
the various streaming-specific challenges. Streaming changes are
often unpredictable and bursty: patterns may appear and disappear
at a later time, they can rapidly change across subsequent time steps,
or their updates can vary based on different domains. In the face of
such data, an important research problem that needs to be addressed
is the problem of inattentional blindness on the human side. While
change blindness can happen due to velocity of the data that is too
high for a human observer to detect a change, high velocity coupled
with high volume of changes can lead to important patterns escaping
human attention. Since a data stream is constantly evolving, human
analysts may struggle to pay attention to important states or transi-
tions and this can lead to inattentional blindness [MSCS05]. This
is especially relevant for the active monitoring task [MR98], where
visualizations need to adapt for engaging analysts about the most
salient changes in the system. Healey et al. [HE12] have pointed
out the need to leverage the pre-attentive properties of retinal vari-
ables while designing visualizations to encode change. Effective
use of colour, motion, etc., can effectively capture human attention,
which is especially needed in the case of monitoring tasks. Related
research areas where human reaction time in response to dynamic
data [MDH95] has been studied can be utilized for addressing the
problem of inattentional blindness.
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Change Presentation versus Exploration: In many of the papers
we surveyed, the visual encoding is an output of an underlying com-
putational model that detects and quantifies the significant changes
in the evolving patterns. In scenarios like situational awareness, it
is important to present these patterns in a transparent manner so
that the key insights can be efficiently discovered by the analysts.
The goals of such presentation-based encoding can be very dif-
ferent from pure exploratory visualization encoding, as has been
highlighted in the evolving research area of presentation-oriented
visualizations [Kos16]. As pointed out by MacEachren [MJR*11],
the data need to be presented at appropriate levels of abstraction for
the user to shift between different perspectives about the data. This
is especially needed for complex sense-making tasks when an ana-
lyst is aiming for building situational awareness about the stream by
understanding the causes and implications of the changes. However,
the understanding behind the building blocks of such abstraction-
based design is still in its infancy. Even an abstract representation
has to generate enough confidence in an analyst to inspire confident
decision making by highlighting the underlying causalities of the
visual patterns. An important direction will be to investigate what
design criteria should be used for generating presentation-oriented
visualizations that effectively summarize and communicate impor-
tant changes and the relevant context to the user.

Handling Uncertainty due to Incremental Updates: We found
that the issue of incompleteness of information or uncertainty in a
stream has not been substantially addressed in the visualization de-
sign phase. Often, incremental approaches are used that incorporate
information as it becomes available [Gam10] and this implies that
the mental model of the analyst has to constantly adapt to the tempo-
rally evolving information. While machine-level pre-processing like
binning, clustering or use of sliding windows has been used, related
research areas like incremental visualization [GFWS96, AS13] can
be leveraged for designing and evaluating visualizations that handle
irregular updates. Such incremental visualization will be needed to
adapt to the changing frequency of data updates, handle bursty data
and still preserve the mental map of users and the context of past
information. An open issue for incremental visualizations is that
analysts might not be confident while making decisions due to the
uncertainty caused by partially available information, and that can
lead to a lack of trust [FPD*12]. Novel incremental visualizations
of the data [KBK11] that inform the analyst of both the uncertainty
in the visual representation, as well as the context of the changes,
can help bridge this gap between analytical uncertainty and trust.

Evaluation Studies, Metrics and Benchmarks: A significant
gap in streaming data visualization research is the lack of formal
evaluation methods for qualitatively or quantitatively comparing the
various design trade-offs [DPW*15]. We posit that not only do we
require formal approaches like design studies with domain experts
and controlled user studies by simulating or in actual streaming
environments, we also need to establish new metrics based on the
design trade-offs, some of which were described in Section 5. For
example, in monitoring scenarios with high-velocity data, user en-
gagement can be an important metric. The trade-off there is that
human attention might be fixated on one set of patterns, while miss-
ing another set of patterns due to inattentional blindness. The is-
sue of change blindness should also be investigated further: what
metrics do we use to measure the effect of the time encoding strate-
gies on change blindness?

Related areas of research that can be leveraged towards building
such visualizations are metrics like memorability [BVB*13]. In the
face of rapidly changing data and context, memorable visualizations
can help analysts quickly recall past patterns and enable them to act
on the currently observed patterns. Tasks where the search targets
are not clearly defined can benefit from explicit design criteria for
increasing the memorability of key temporal trends and anomalies.

7. Conclusion and Future Work

We have presented a survey and analysis of the state of the art in
streaming data visualization, by focusing exclusively on the rela-
tionship between the design space and complexities of change per-
ception. In the process, we have looked at how the different change
dimensions such as frequency, amount, uncertainty and complexity
are accentuated by the velocity and volatility of data across common
streaming domains, and affect human perception. We mapped these
data-oriented problems to domain-specific goals for understand-
ing challenges that domain experts face while analysing streaming
patterns. To meet these challenges, visualization techniques have
evolved over the years and our survey analysed how well differ-
ent encoding strategies are able to address the human factors. In
turn, our analysis revealed several design challenges and trade-offs
that can eventually be synthesized into a set of criteria for effective
streaming data visualization design.

We believe that the findings and gap analysis in our study can
be leveraged for developing a sustained research agenda around
investigating how visualizations can better facilitate change percep-
tion in a streaming environment, and how different views can be
integrated to provide a holistic perspective about the stream. The
research agenda will be complementary to our recent focus in areas
of stream data mining and big data visualization, and potentially
lead to effective integration of automated methods and perceptually
motivated visualization techniques for human-in-the-loop streaming
data exploration.
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[FHL10] FORBES A. G., HÖLLERER T., LEGRADY G.: behaviorism: A
framework for dynamic data visualization. IEEE Transactions
on Visualization and Computer Graphics 16, 6 (January 2010),
1164–1171.

[FK14] FISCHER, F., KEIM D. A.: NStreamAware: real-time visual
analytics for data streams to enhance situational awareness. In
Proceedings of the 11th Workshop on Visualization for Cyber
Security (New York, New York, USA, November 2014), ACM
Press, pp. 65–72.

[FMK12] FISCHER F., MANSMANN F., KEIM D. A.: Real-time visual
analytics for event data streams. In Proceedings of the 27th An-
nual ACM Symposium on Applied Computing (2012), ACM,
pp. 801–806.

[FPD*12] FISHER D., POPOV I., DRUCKER S.: Trust me, i’m par-
tially right: incremental visualization lets analysts explore large
datasets faster. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (2012), ACM, pp. 1673–
1682.

[Gam10] GAMA J.: Knowledge Discovery from Data Streams. CRC
Press, Florida, USA, 2010.

[Gam12] GAMA J.: A survey on learning from data streams: Current
and future trends. Progress in Artificial Intelligence 1, 1 (2012),
45–55.

[GFWS96] GARRETT W. F., FUCHS H., WHITTON M. C., STATE A.: Real-
time incremental visualization of dynamic ultrasound volumes
using parallel bsp trees. In Proceedings of IEEE Visualization
(1996), pp. 235–240.

[GHN12] GANSNER E. R., HU Y., NORTH S.: Visualizing streaming
text data with dynamic graphs and maps. In Proceedings of Graph
Drawing (2012), pp. 439–450.

[GS14] GOTZ D., STAVROPOULOS H.: Decisionflow: Visual analytics
for high-dimensional temporal event sequence data. IEEE Trans-
actions on Visualization and Computer Graphics 20, 12 (2014),
1783–1792.

[GZK05] GABER M. M., ZASLAVSKY A., KRISHNASWAMY S.: Min-
ing data streams: A review. ACM Sigmod Record 34, 2 (2005),
18–26.

[HBE95] HEALEY C. G., BOOTH K. S., ENNS J. T.: Visualizing real-
time multivariate data using preattentive processing. ACM Trans-
actions on Modeling and Computer Simulation 5, 3 (1995), 190–
221.

[HE12] HEALEY C., ENNS J.: Attention and visual memory in visual-
ization and computer graphics. IEEE Transactions on Visualiza-
tion and Computer Graphics 18, 7 (2012), 1170–1188.

[HEF*14] HURTER C., ERSOY O., FABRIKANT S. I., KLEIN T. R., TELEA

A. C.: Bundled visualization of dynamic graph and trail data.
IEEE Transactions on Visualization and Computer Graphics 20,
8 (2014), 1141–1157.

[HHN00] HAVRE S., HETZLER B., NOWELL L.: Themeriver: Visualiz-
ing theme changes over time. In Proceedings of IEEE Symposium
on Information Visualization (2000), pp. 115–123.

[HKF16] HAROZ S., KOSARA R., FRANCONERI S. L.: The connected
scatterplot for presenting paired time series. IEEE Transactions
on Visualization and Computer Graphics 22, 9 (2016), 2174–
2186.
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Supporting Information

Additional Supporting Information may be found in the online ver-
sion of this article at the publisher’s web site:

Figure S1: Choropleths are a natural visualization choice when
geospatial data are involved.

Figure S2: Scatter plots have fixed, continuous, numeric values for
X/Y axes which dictate the spatial arrangements of points repre-
senting individual data items.

Figure S3: Timelines and line charts are a natural fit for temporal
data.

Figure S4: Node-link visualizations are optimal for showing mul-
tiple connections between data items and are often the technique of
choice in displaying social networks.

Figure S5: Matrix visualizations spatially organize data and with
the advantage of making locating individual data items predictable
and efficient.

Figure S6: Histograms often appear as small additions for context
in the presence of other visualizations.

Figure S7: Typical word clouds are useful for displaying the relative
prominence of single-word attributes.

Figure S8: Tree-maps are helpful for displaying hierarchical infor-
mation.

Figure S9: Theme river is an extension of timeline techniques which
uses filled arcs to show the change in a data item over time.

Figure S10: Calendar-based representations have been used for vi-
sualizing time information, especially when the temporal granularity
is of the order of months.

Figure S11: Parallel coordinate plots (PCP) represent multivariate
data by encoding samples as contiguous line segments connecting
pairs of variables assigned to vertical axes and time can be an
additional axis.
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