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ABSTRACT
Scientists often use specific data analysis and presentation
methods familiar within their domain. But does high famil-
iarity drive better analytical judgment? This question is es-
pecially relevant when familiar methods themselves can have
shortcomings: many visualizations used conventionally for sci-
entific data analysis and presentation do not follow established
best practices. This necessitates new methods that might be
unfamiliar yet prove to be more effective. But there is little
empirical understanding of the relationships between scien-
tists’ subjective impressions about familiar and unfamiliar
visualizations and objective measures of their visual analytic
judgments. To address this gap and to study these factors, we
focus on visualizations used for comparison of climate model
performance. We report on a comprehensive survey-based user
study with 47 climate scientists and present an analysis of: i)
relationships among scientists’ familiarity, their perceived lev-
els of comfort, confidence, accuracy, and objective measures
of accuracy, and ii) relationships among domain experience,
visualization familiarity, and post-study preference.
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INTRODUCTION
Domain experts’ analytical workflow often comprises a set of
conventional methods for data analysis and presentation. Since
experts are highly familiar with these methods, they tend to in-
herently have greater confidence in their outputs than in those
of new, unfamiliar methods. At the same time, conventional
data visualization methods used by practitioners might not be
in sync with visualization best practices [9]. However, there
is little empirical analysis of the relative effectiveness of fa-
miliar and unfamiliar visualization techniques, compared with
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domain scientists’ subjective impressions (e.g., confidence,
preference, etc.) or with objective performance measures.

To fill this gap, we contribute a user study with climate scien-
tists, focusing on the common task of comparing and assessing
similarities and differences in model fidelity across multiple
simulations. We report on three related contributions in this
paper. First, through a problem characterization phase, we de-
veloped a shared understanding of the important visualization
tasks for model fidelity comparison, and identified visualiza-
tion techniques that are currently widely used for these tasks.
By applying visualization design principles, we collaboratively
developed and selected two sets of visualizations: familiar vi-
sualizations modified for more effective visual comparison,
and unfamiliar visualizations that had the potential to be more
effective than the familiar ones. Second, using these two sets
we conducted a user study with 47 climate scientists, where
we recorded their objective task responses, their subjective
impressions [4], such as their perceived levels of comfort, con-
fidence, accuracy when carrying out analysis tasks using a
particular visualization, and their preferred visualization as
indicated at the close of the study. Third, we analyzed study
results for understanding the relationships among scientists’
domain experience, familiarity, and objective measures of their
analytical judgments, the discrepancies between their famil-
iarity and preference levels for each visualization, and also
the discrepancies between their subjective impressions and
objective performance measures.

PROBLEM AND TASK CHARACTERIZATION
The work reported here results from a six-month long col-
laboration between two climate scientists (co-authors of this
paper) and visualization researchers. Following the nested
model approach [21], there were four distinct stages in our
collaboration: i) characterization of the model fidelity analysis
problem, ii) a shared understanding of the visualization tasks,
iii) analysis of the state-of-the-art in visualizations used by
climate scientists, and iv) participatory design of prototypes.
We had frequent face-to-face discussions for facilitating all
of these stages, and the outcome of this collaborative design
process helped us select appropriate tasks and visualizations,
calibrated by experts’ degree of familiarity, for the user study.
In this section we describe the model fidelity analysis problem
and characterize the relevant visualization tasks.

Model Fidelity Analysis: Climate model fidelity is measured
by the degree of consistency between models and observa-
tions for specific model output variables or features. Scientists
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Figure 1. Illustrating the multi-model, multi-output comparison prob-
lem where scientists have to visually reconcile similarities and differ-
ences with respect to many models, outputs, and metrics. The visual-
ization challenge is twofold: i) scale up to the different levels of the cate-
gories, e.g., models m1, m2, m3, etc., and outputs o1, o2, o3, o4, etc. and
ii) at the same time provide visual cues for similarity and dissimilarity
based on the values for many metrics (v1, v2, v3, v4, etc.).

frequently summarize aspects of the model’s fidelity, using
statistical metrics such as (but not limited to) the root-mean-
square error, correlation, and relative variance of the model
output variables compared to observations of the same vari-
able [12]. Because a credible climate simulation requires
reasonable simulations of many different physical processes
and state variables, it is typically not sufficient to evaluate
models on a single metric, instead, models must be compared
across a suite of such metrics, leading to a more complex
analysis situation. In addition, identifying models that exhibit
similar or dissimilar patterns of performance across a suite
of metrics may lead to important insights into model behav-
iors. Frequently, trade-offs occur between different aspects of
model fidelity, with models that perform better in one area per-
forming worse in another, so scientists must perform nuanced
analysis to understand subtle similarities and differences in
fidelity with respect to multiple metrics.

Multi-Way Visual Comparison Tasks: Model fidelity anal-
ysis is typically supported by visual comparison of multiple
metrics across simulations derived from multiple models. We
term these tasks multi-way visual comparison tasks (Figure 1),
since they involve comparison across different dimensions:
among models and output variables, their combinations, and
across different metrics. The comparison tasks are simpler
when evaluating a single model using a single type of statis-
tical metric, e.g. comparing model-observation correlation
for temperature and precipitation fields; or when comparing
the performance of multiple models for a single variable and
type of metric, e.g. identifying the model that produces the
lowest root-mean-square-error for cloud extent. However, in
reality, when evaluating overall model fidelity, scientists of-
ten need to compare across many models (10–15 or more),
many output variables (10–15), and more than one metric (e.g.
root-mean-square error, global mean bias, correlation, and
variance).

As illustrated in Figure 1, a major visualization design chal-
lenge in multi-way visual comparison tasks stems from the
need to simultaneously express similarity and dissimilarity
based patterns across multiple categorical variables (e.g., types
of models, output variables, etc.) and numerical variables
(e.g., fidelity metrics). Visualizations of model fidelity met-
rics should enable an expert user to efficiently and accurately
perform tasks such as: i) assess and compare the overall fi-
delity of models across a range of metrics, and ii) identify
groups of models that exhibit similar or different patterns of

behavior across multiple metrics. In this work, our main moti-
vation was to understand how scientists’ analytical judgment
for comparison of fidelity across different combinations of
models, model outputs and metrics is impacted by different
visualization techniques.

RELATED WORK
Our contributions combine two areas of visualization research:
i) visual comparison approaches, and ii) evaluation of the user
experience of domain experts using visualizations.

Alternative Approaches for Visual Comparison
The design space of visual comparison using data sets that
contain a mix of numerical and categorical attributes can be
described based on three different approaches. In the first
approach, multiple visual variables [2], like shape, color, or
symbols, can be used for representing different categorical
variables. Such visualizations are popular in the climate sci-
ence domain [24]. But they do not scale well to the number
of levels in a categorical variable, as the number of discrim-
inatory steps using color or shape is limited. The second
approach is to use small multiples [29], where depending on
the task, a scatter plot or bar chart can be instantiated for each
categorical variable. The number of small multiples can be a
problem when there are many categories or many levels in a
category, and might not scale well for visual comparison. In a
third approach, several researchers have proposed alternative
representations of categorical data [10]. Researchers have
also looked at different interestingness measures for encoding
multivariate relationships in mixed data sets [1] and using ana-
lytical methods like multiple correspondence analysis [5]. In
this work, we focus on model fidelity visualization techniques
used in the climate science community. Two popular choices
are the Taylor plots [28] and heat maps [24]. We analyzed their
merits and demerits, proposed alternatives by modifying these
familiar visualizations to suit the visual comparison tasks, and
introduced unfamiliar yet potentially optimal visualizations
that could lead to better analytical judgment.

Evaluating Domain Experts’ Visualization Experience
Previous research has demonstrated that visualization re-
searchers and domain experts often disagree about the efficacy
of visualization designs [3] . This can be for two reasons: do-
main experts tend to trust and prefer familiar analysis methods
over new ones [27], and there is a general lack of awareness
of visualization best practices and available alternatives [9].
In human-machine relationships, as in human-human rela-
tionships, familiarity breeds trust [11], and analysts tend to
have more trust in familiar means and mediums. However,
some conventional methods that are widely used for model
performance visualization may scale poorly to more complex
data. Novel approaches may offer better support for complex
comparisons of model fidelity across multiple models and
variables. To investigate how much domain scientists trust
and prefer different visualization techniques, we followed the
strategy in McAllister’s survey [20], which was subsequently
adapted for evaluating domain experts’ trust in cyber security
interfaces [27] and in complex dynamic systems [30]. We
adopt a relevant subset of these questions for our evaluation.
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Figure 2. Small multiples of Taylor plots where each plot represents a
model and each data point is an output variable. Taylor plots are pop-
ularly used for model fidelity comparison. Since the default layout with
many symbols is less effective for comparison across many (≥ 3) models
and many (≥ 3) variables, we designed this small multiple version, which
our collaborators rated positively and was eventually used in the study.

Domain experts’ trust in and preference for visualization sys-
tems is an emerging area of research [26]. In our work, we
focus exclusively on the efficacy of alternative visualization
designs and how they can inspire comfort, confidence, and
preference in climate scientists.

VISUALIZATION DESIGN ALTERNATIVES
The multi-way visual comparison tasks abstracted during the
problem characterization phase were utilized for analyzing the
merits and demerits of different model fidelity visualization
techniques. This was done through a review of the literature
and discussions with two climate scientists (co-authors on this
paper), one of whom has more than 30 years of experience
in climate modeling. In the course of our discussions we
narrowed down on a subset of such tasks that climate scien-
tists most frequently perform as part of their analysis routine.
By applying visualization design principles in the context of
model comparison [9], we found that familiar visualizations
such as the Taylor plots, heat maps, and bar charts, that are
used for such tasks, might not be the optimal choice. These
led us to propose design alternatives by modifying familiar
visualizations and introducing new ones. In this section, we
describe their design rationale.

Modification of Familiar Visualizations
We collaboratively critiqued the familiar visualizations by
analyzing if they effectively communicate similarity in model
fidelity and if that information can be recovered by scientists
accurately and efficiently. Based on our analysis, we proposed
the use of improved versions of the familiar visualizations.

Small Multiples of Taylor Plots: A Taylor plot [28] graphi-
cally summarizes how closely a pattern (or a set of patterns)
matches observations. The similarity between two patterns is
quantified in terms of their correlation, their centered, normal-
ized root-mean-square difference and their variability (repre-
sented by their standard deviations). These plots are especially
useful in evaluating multiple (< 3) output variables of complex
models or in gauging the relative skill of many different mod-
els for a small number of output variables (< 3). As shown
in the Taylor plot in Figure 2, each circle represents a model
output. The light gray contours show the centered normalized
RMSE, which is proportional to the distance from the refer-
ence point (1, 1). The angular axis indicates the correlation
with respect to the observational data. The radial axis indi-
cates the variance ratio, i.e. the ratio of the model’s standard
deviation to the standard deviation of the observations, which
was not used in this study.

Figure 3. Heatmaps representing model performance based on two dif-
ferent metrics provide a quick overview of overall differences and vari-
ability. To help in distinguishing among small differences, we use a seg-
mented color scheme. Using of color to express quantitative differences
can lead to less accurate judgment.

When a single Taylor plot [28] is used to summarize many
(> 3) variables across many (> 3) models, information can
be obscured by overlap and clutter. In such plots, multiple
visual variables are used to represent the different levels within
categorical variables, which can reduce the accuracy and effi-
ciency of visual analysis. We addressed this problem by using
small multiples of Taylor plots [29]. In the small multiples
used in this study, each Taylor plot (Figure 2) represents a
different model, while color is used to encode different output
variables. This encompasses both superposition (for variables)
and juxtaposition (for models) categories for visual compari-
son [13]. Similar to identifying shapes in scatter plots, one can
compare the shapes of point clouds in these Taylor plots for
a multi-way comparison among models and variables. This
small multiple approach can suffer from two limitations: vi-
sual scalability when the number of models is greater than
four or five, and difficulty in comparing across different output
variables using their relative positions on the small multiple
plots. Other strategies for using Taylor plots are possible, but
each strategy we considered suffers from similar difficulties
in comparing many models. We feel Taylor plots are most
useful when comparing a few (< 3) models for multiple output
variables, or multiple models for a few (< 3) output variables.

Variants of Heat Maps and Bar Charts: A heat map is one
of the most widely-used visualizations for comparing model
outputs or model performance [6]. We designed a heat map
with a continuous color scheme [14] where yellow indicated
bad performance while blue indicated good performance. We
used two heat maps for representing two different performance
metrics. In the heat maps, all models and variables are repre-
sented within a large single plot [31], in contrast to the small
multiples used for the Taylor plots. By using color to represent
variables, heat maps can support an efficient comparison of
model fidelity and aid identification of similarities and dissimi-
larities by visual pattern recognition, but the use of color might
limit the accuracy of quantitative comparisons [33].While sim-
ilarity metrics could be used to sort variables in heat maps in a
more meaningful fashion, we chose to use alphabetical sorting
because of its common use in the climate science literature,
and to ease comparison of the same variables across multiple
heat maps, where different orderings for each heat map can
lead to high comparison complexity.

We found bar charts to be a very familiar visual representation
for climate scientists, which are often used to examine relative
distributions among variables, but not necessarily for multi-



way comparison tasks. We also found variants of bar chart
representations in the climate science literature, including
stacked bar charts, with different stacks representing different
categories [24]. By using spatial position along a common
axis to encode information, bar charts can support accurate
estimation and comparison of small differences in quantitative
values [33]. To support visual comparison among multiple
models, we used a small multiple approach where each small
multiple represents a model, and in order to encode multiple
metrics, two sets of bar charts are provided, where each set
represents a metric. While bar charts enable quantitatively
accurate evaluations, comparison across multiple bar charts
for many models and variables may be difficult and inefficient.

Design of Unfamiliar Visualizations: Slope Plots
We introduced the slope plots (Figure 4), a variant of the
slopegraph proposed by Tufte [29], to our collaborators as an
alternative, yet potentially unfamiliar, solution for multi-way
visual comparison. Our aim was to overcome the following
shortcomings of the existing visualizations. i) The original
Taylor plots do not scale for many models and variables ii)
The small multiples of Taylor plots and bar charts may not
support optimal comparison amongst multiple (10) models
and multiple (10) variables. iii) The heat map, with a large
single approach, supports efficient comparison, but because it
uses color to represent quantities, may reduce accuracy. With
the slope plot, we also followed the large single approach, but
with a position-based encoding and explicit cues of similar-
ity/dissimilarity, we aimed at making the comparison tasks.
more accurate and efficient. We describe the design rationale
and implementation in detail below.

Slope plots encode one numerical variable (representing a
metric) in a single plot, while multiple such plots can be juxta-
posed for multi-way visual comparison. The main rationale
behind the slope plot was to allow comparison by both super-
position and juxtaposition [13], so that scientists can assess
variability among both output variables and models quickly
and accurately.

The layout of the slope plot is inspired by the parallel coor-
dinates visualization [17]. Slope plots have an intentional
horizontal layout to avoid confusion with line plots with time
on the horizontal axis. In the slope plot (Figure 4), each hori-
zontal axis represents the same numerical variable, correlation
on the left plot and centered RMSE on the right. The axis
can be discretized based on the number of levels in a category,
which in this case are the different models, represented by
color. The number of axes is equal to the number of levels in
another categorical variable, in this case, the model outputs.

Polylines connecting the axes represent different models and
their slopes are not indicative of functional relationships
among the outputs. Relative slopes indicate the similarities
and differences among the models. By linking different points,
we added Gestalt effects of connectivity [18] and similarity,
where parallelism or non-parallelism of lines (representing
models) will give visual cues of overall similarity [7] or dis-
similarity with respect to both models and variables. The
spread of the points on the horizontal axis indicates variability
across models. The advantage of slope plots over the other
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Figure 4. The slope plot was designed as an alternative to the exist-
ing model fidelity visualization techniques. Each polyline represents a
model and their relative slopes indicate similarities and dissimilarities
with respect to different output variables, which are represented on the
horizontal axes. This design offers an efficient way to look at variabil-
ity across both models (polylines) and variables (rows). Jitter is added
along the Y-axis to avoid over-plotting.

visualizations is that it scales well to the association among
multiple levels of two categorical variables (i.e., models and
outputs) while at the same time preserving the perceptual cues
about similarity and dissimilarity.

One of the problems with spatial encoding is the over-plotting
of multiple data points. To minimize such over-plotting, we
introduced jitter along the vertical axis. This does not distort
the values as the vertical axis is categorical, and due to the
jitter lines do not overlap and can be precisely identified.

STUDY DESIGN
We conducted a within-subjects study to evaluate climate scien-
tists’ subjective and objective measures of analytical judgment
using the familiar and potentially unfamiliar visualization tech-
niques. The study was divided into three sections.

In the first section, we asked participants questions regarding
their demographic characteristics and years of domain experi-
ence, and provided training on the tasks and visualizations that
would be used for the study. For this study, it was important
to isolate any domain-specific bias from the assessment of the
visualizations. Climate scientists, when comparing models
across multiple metrics, may at times assign different weights
to different output variables, depending on the importance of
those variables to the analytical task. Our instructions made
it clear that for the purposes of the study, participants should
treat all variables and metrics as equally important. We also
emphasized that the goal of this study was not to identify
the best model, but to assess the effectiveness of the analysis
methods, namely, the different visualization techniques.

In the second section, participants were asked to perform three
tasks for each visualization they were shown. These tasks
were designed to be relevant for scientists in developing an
understanding of the information contained in multiple fidelity
metrics across multiple model simulations.



In the third section, we selected a set of questions that assessed
scientists’ subjective experience of the visualizations with re-
spect to different dimensions of trust (e.g., perceived accuracy,
efficiency, comfort, confidence) and to their preference for a
particular visualization technique. We describe the different
aspects of our study design in detail below.

Data and Visualization Generation
We discuss the data and visualization generation based on the
performance metric outputs.

Models and Outputs: We used simulation output from a num-
ber of variants of version 5 of the Community Atmosphere
Model (CAM5, [23]), the atmosphere component of the Com-
munity Earth System Modeling (CESM) project [16]; and
descendants of that model developed for a variety of projects
supported with funding from the U.S. Department of Energy
(DOE) Earth System Model Program, which we call generi-
cally “CAM5” variants hereafter. We selected output variables
that participate in many important ways in the climate system.
These variables play important roles in the Earth’s radiation
budget and cloud features (LWCF, SWCF, RELHUM, AOD-
VIS), the hydrologic cycle (PRECT), and general circulation
features (T, TREFHT, and U).

Fidelity Metrics: The model performance metrics selected
here are amongst the metrics that are commonly and widely
used in the climate modeling community [22]. These met-
rics, the correlation and the normalized standard variance, are
straightforward to calculate and interpret. The two metrics
relate to two different aspects of model performance: the corre-
lation is a measure of pattern matching, while the normalized
standard variance is a measure of how well the magnitude
of the variability of the model agrees with the variability of
observations. The model-observation agreement is often eval-
uated in a climatological sense, i.e., an average January from
the model simulation is compared with an average observed
January, or an average is computed for a three-month period
identified as a season. In keeping with that practice, the vi-
sualizations presented in this study represent fidelity metrics
computed for each of those seasons. We used two data sets
from two seasons as a repeated measure.

Normalization and Variability: A higher correlation score
indicates good model performance, as the output is highly
correlated with the observation. A higher nRMSE score on the
other hand signifies poor model performance. Therefore for
semantic equivalence between a plot for correlation and a plot
for nRMSE, where high values represent good performance,
we invert the nRMSE scores by subtracting each value from
the maximum value in the data set. Within each pair of plots in
the study, one indicates the correlation and the other indicates
the inverted nRMSE score. In order to ensure a reasonable
amount of variability among the fidelity scores for both the
metrics, we selected data set pairs where the average standard
deviation across the models for a pair was the highest.

Visualizations: We selected four visualizations for the study,
based on our understanding of scientists’ familiarity. These
were small multiples of Taylor plots, heatmaps, small multi-

ples of bar charts, and slope plots, as discussed earlier. We
expected the slope plot to be the least familiar visualization.

For ordering the rows and columns in heat maps and slope
plots, and for organizing the layout of the small multiples, we
selected a default alphabetical order and did not perform any
layout optimization. This was for two reasons: First, for the
small multiple approach, each multiple will have a different
ordering and it could be hard to trace model names across
many of them. Second, since the tasks were about similarity
and dissimilarity (all performed together), any optimization
would be based on a pairwise distance metric. Sorting or lay-
ing out small multiples based on a pairwise distance metric is
non-trivial and may lead to visual complexity. Therefore, for
the sake of consistency, we did not optimize the layout for any
of the plots. Further, we controlled for the following factors:
i) Ordering: The visualizations were randomly ordered across
participants. To minimize the recall effect, for the same kind
of visualization across two data sets, the left and right orders
were swapped. For example, we had two instantiations of jux-
taposed heatmaps: one where the right metric was correlation
and the left one was nRMSE, whereas in the second data set, it
was the reverse. ii) Scales: The ranges on the axes of the plots
were scaled based on the minimum and maximum value of the
data; small differences could be highlighted by not scaling be-
tween a global minimum and global maximum. ii) Resolution:
The degree of numerical resolution possible in each visualiza-
tion was dependent on the visualization type. Heat maps use
the lowest resolution defined by the number of color levels,
but all other visualizations use spatial encoding, with their
effective resolution depending on spatial locations. Equiva-
lence in resolution between visualizations was supported by
holding the interval spacing of axis ticks constant across all
spatial visualizations. Pilot studies also helped us fine-tune
the resolution and reduce clutter.

Questionnaire and Task Selection
In this section, we discuss the questions posed to participants
and the tasks they had to perform during the study for each
of the three sections. Participants were required to respond
to all items in the study for their response to be considered
complete, and they were not allowed to skip questions.

Section 1. Demographics, Experience, and Familiarity: In
this section, we asked scientists to report their age, gender,
years of domain experience, and their primary role as a cli-
mate scientist (i.e., global model user, global model developer,
regional model user, or regional model developer). These
questions were followed by the introduction of all visualiza-
tions by showing an example of each visualization, using real
data, and describing each visualization in the context of the
tasks. Before starting the task performance section, we first
asked participants to rate their familiarity with each of the four
visualizations, and their frequency of use of each visualization
as part of their analysis routine. By normalizing and averaging
their responses on these two questions, we derived a famil-
iarity score for each participant for a particular visualization
technique.

Section 2. Analytical Tasks: For the study, we focused on
the comparison-based tasks that we derived through our initial



discussions about climate scientists’ analytical workflow. We
conducted pilot tests to evaluate suitable comparative analysis
tasks that could be performed using all four visualization types
and the associated difficulty levels of the tasks, and accord-
ingly distilled these into the following three tasks that were
posed for each visualization:

Task A: “Identify two models, which are most similar in their
correlation and normalized RMSE metrics across most of the
output variables.”

Task B: “Which two output variables show the highest vari-
ability in their correlation and normalized RMSE across all
models?”

Task C: “Identify the two models that disagree the most in
their correlation and normalized RMSE metrics across most
of the output variables.”

For each of these tasks, participants were asked to rate their
confidence and comfort level with each visualization, on a 5
point Likert scale. The difficulty level of Tasks A and C was
greater than that of Task B as in the case of the latter, only a
few output variables showed significantly greater variability
than others. This was easier to detect visually as compared
with the subtle similarities and differences among multiple
models.

Section 3. Subjective Impressions Rating: At the end of the
task performance section, participants were asked to record
their subjective impressions of the visualizations they used.
We recorded two types of responses: i) Perceived accuracy,
efficiency, comfort, confidence, and preference: To analyze
participants’ perceptions about using a particular visualization,
they were asked to record, on a Likert scale, their perceived
accuracy, efficiency, comfort, confidence, and preference for
each visualization. These questions were a subset of the trust-
related questions used in McAllister’s survey [20], and later
adopted by Takayama et al [27] for evaluating analysts’ trust in
user interfaces for system administrators. Note the redundancy
in asking about perceived confidence and comfort levels, for
each task, and also amongst post-completion questions. This
intentional redundancy allowed us to assess the consistency
between participant’s subjective perceptions after completion
of each task, compared with their post-study, overall evalu-
ations of each visualization. ii) Preference Ranking: This
was a ranking on a scale of 1 (highest) to 4 (lowest), where
participants assigned a rank to their preferred visualization.
Preference is a strong indicator of potential adoption of a visu-
alization technique. Following the recommendations of Lam
et al. [19] for assessing user experience with visualizations, we
also asked participants to comment on the advantages and bar-
riers they perceived in using each visualization. By analyzing
these comments we could potentially find the reason behind
scientists’ strong or weak preference for a visualization.

Participants
Participants were recruited anonymously through different
mailing lists that involve collaborations among universities
and research laboratories. No personal identifiers about par-
ticipants were recorded. We only recorded their IP addresses,
to ensure that duplicate responses were not submitted from

the same machine.Overall, there were 47 participants with
a self-reported background in climate modeling. The study
participants comprised a very experienced group of climate
scientists with a median domain experience of 12 years, and a
majority of participants rating themselves as very familiar or
extremely familiar with modeling. Each participant performed
three tasks (Task A,B,C) for each of the four visualization
types, where two data sets were used as a repeated measure.
The total number of trials was thus 47×4×2 = 376.

Settings
The experiments reported in this study were all web-based.
This remotely-based study setting was necessary because the
participants in the study were climate scientists spread across
different academic institutions and research labs across the
United States, Europe, and South America. In our experimen-
tal set-up we took several measures to ensure reliability and
minimize bias in the results that could arise from the web-
based setting. First, to minimize the risk that a participant
might not understand the question or be ready for the test, we
trained participants about the visualizations and allowed them
to them quit the study if they did not understand a question.
Participants could not return to previous tasks to compare
their responses across multiple visualizations.If a participant
stopped the study and returned to it later, they reentered the
study from the point where they had left off, preventing unin-
tentional repetition of the tasks by a participant.

The trials were randomized across participants, and they se-
quentially performed all three analytic tasks using one particu-
lar visualization before being presented with the next visual-
ization, reflecting the general analytical workflow of scientists.
We asked participants if they had any known color vision defi-
ciency (color-blindness), as the ability to distinguish among
colors, was needed to interpret most of the visualizations used
in the study. We filtered out results from one participant who
self-identified as color-blind.

Hypotheses
Objective Accuracy of Task Performance. Given our de-
sign rationale for slope plots, we expected them to support
greater objective accuracy in task performance. But we also
expected task complexity, the length of domain experience and
degree of familiarity with particular visualizations to affect
performance accuracy. These expectations led to the following
hypotheses: H1a) Overall, participants will report a greater
level of accuracy with slope plots. H1b) Tasks A and C will
result in greater differences in performance than Task B due to
the greater complexity of these tasks H1c) Longer domain ex-
perience and greater familiarity with particular visualizations
will lead to more accurate performance.

Perceived Confidence, Comfort, Accuracy and Efficiency:
We know that familarity with an analytical tool increases trust
and confidence in that tool among users [11]. This led to the
following hypothesis:H2) Participants with longer domain ex-
perience will report higher average confidence and comfort
levels for familiar visualizations than for relatively unfamil-
iar visualizations, such as the slope plots. Given the position
based encoding of slope plots, we hypothesized that: H3a)
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Figure 5. Objective accuracy based on the comparison precision metric.
Error bars represent 95% confidence intervals. Overall, the heat map
and slope plot showed the highest level of accuracy, with a significant
difference with respect to the Taylor plot (p <0.05). While comparison
precision values for Tasks A and B were similar, for Task C, we observe
that the heat map, slope plot, and bar chart were significantly more ac-
curate than the Taylor plot (p <0.05).

Participants will report greater perceived accuracy with slope
plots as compared to heat maps. H3b) Participants will appre-
ciate the utility of slope plots, and that will be reflected in their
comparable or higher average ranking in terms of perceived
accuracy and efficiency than more familiar plots such as Taylor
plots, heat maps, and bar charts.

Familiarity Vs Preference: Recent visualization studies with
domain experts have also demonstrated that carefully and
collaboratively designed visualizations and interfaces can con-
vince experts of their utility and may inspire trust and prefer-
ence [3, 9]. This led to: H4a) Overall, participants will exhibit
a level of preference for slope plots that is comparable with
that of familiar visualizations. We expected the effect of famil-
iarity on preference to be weaker in participants with fewer
years of domain experience as they might be more open to
novel approaches. This led to: H4b) Participants with greater
domain experience will exhibit a stronger preference for fa-
miliar visualizations, while participants with less experience
will be most likely to report a post-study preference for less
familiar visualizations that are of similar or greater perceived
effectiveness for completing the tasks.

Objective Accuracy Vs Perceived Accuracy, Preference,
Familiarity: Regarding the discrepancy between subjective
impressions and precision of scientists’ judgment, we have
seen in past studies that self-calibrated levels of trust correlate
with greater accuracy in task performance [30]. This led to
the following hypotheses: H5a) Participants’ perceived accu-
racy will match their objective performance accuracy. H5b)
Participants’ familiarity and preference ranking for different
visualizations will match with the ranking of the visualizations
derived from their objective accuracy.

Metrics
Comparison Precision: In Tasks A and C, participants were
asked to identify the two most similar and dissimilar models,
respectively. To compute an objective metric characterizing
the correctness of each participants’ response, we used the
the following method: First, we computed the root mean
squared difference (RMSD) between each pair of models for a
given metric, and then calculated the average between the two
RMSD values for each of the two metrics. Next we ranked the
model pairs based on the average RMSD values. The correct
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Figure 6. Distributions of comparison precision scores for Tasks A and
C for the high and low experience groups. Task A resulted in compara-
ble levels of accuracy across both experience groups except for the sig-
nificant difference in accuracy between heat map and bar chart for the
high experience group. For Task C, we can observe consistently lower
accuracy levels for Taylor plots across both experience groups.

response to Task A and to Task C is the pair of models that
exhibits the highest or lowest RMSD , respectively.

In Task B, participants were asked to identify the two models
with the greatest variability in their fidelity scores. To identify
these two models, we first calculated the standard deviation of
the variables with respect to the individual metrics and then
averaged them for a net variability score. Next we ranked the
models by their net variability.

Because the fidelity scores used in this study differ only subtly
between models, the differences among the RMSD and vari-
ability scores computed for different models were also modest.
Hence, instead of categorizing each participant’s response as
true or false, we developed a combined “comparison precision”
metric derived from the relative ranks of the models for the
similarity score (Task A), dissimilarity score (Task C) and
average variability score (Task B). Comparison precision is
given by Cp = (n−r)

n where n is the total number of models
and r is the rank of the model based on any given individual
score,and where the first two models (i.e., the correct answers)
are assigned a rank 0, so that the correct response has a preci-
sion of 1. We therefore have a Cp score for each of the tasks
and for an overall comparison we compute an average of the
three scores across all the tasks.

Discrepancy: We computed the discrepancy between how
scientists actually performed and their perceptions about their
performance and the visualizations using the difference be-
tween the rankings of visualizations derived from comparison
precision scores and their subjective impression ratings, by
normalizing them to a common scale. For each participant,
by using their average comparison precision score across all
the tasks, we rank ordered the visualizations on a scale of
1 (best) to 4 (worst), and compared this ranking with their
preference and familiarity based rankings. Next we derived an
average discrepancy between the rankings (∆AccPreference,
∆AccFamiliarity) by computing the difference between them
and averaging that across all participants. For analyzing the
discrepancy between objective and perceived accuracy, we



rescaled the responses for perceived accuracy to span the
range from 0 to 1, by converting (0,1,2,3,4,5) to (0, 0.25,
0.5, 0.75 and 1). We rescaled the objective accuracy ranks,
ranging from 1 to 4, using a similar transformation, that
is, converting (1,2,3,4) to (1.0,0.66,0.33,0), giving higher
weight to higher ranked models. We then obtained the dis-
crepancy (∆ObjSubjAccuracy) by subtracting the rescaled sub-
jective impression scores from those of objective accuracy.
A greater difference indicates that the rankings of scientists’
performance and their self-rated impression of their own per-
formance did not match: they either overestimated or underes-
timated their performance accuracy.

Participant grouping criteria: We grouped participants into
high and low groups based on self-reported domain experience.
Participants were asked to rate their degree of familiarity (on
a 5-point Likert scale) and the number of years of experience
in climate modeling. These two measured variables had dif-
ferent scales, so we first normalized them by dividing by the
maximum value for each category and calculated the average
of the two normalized values. We then assigned 25 partici-
pants to the high group (above the average) and 22 to the low
group (below the average).

RESULTS
We report the study results by comparing participants’ ob-
jective accuracy with subjective impressions and analyzing
the effects of experience and familiarity. Uncertainty in all
results is reported as 95% confidence intervals, estimated by
bootstrapping, reflecting the range of uncertainty in the mean
value. The fixed effects (i.e., independent variables) were the
two climate modeling experience groups (i.e., high and low
experience), three tasks (i.e., Task A, B, and C), and four vi-
sualization types (e.g., Taylor plot, heat map, bar chart, and
slope plot). Confidence and comfort level were assessed us-
ing a repeated measures design :participants were exposed to
multiple treatment conditions (i.e., visualization tasks) and
answered the same set of questions for each condition. To
analyze these variables, we fit a mixed effects analysis of
variance (ANOVA) model [32], with a normal conditional dis-
tribution, and random effects for repeated measures to account
for the non-independent nature of the data. We adjusted the
p-values for analyses involving multiple comparisons using
the Bonferroni correction [15].

Objective Accuracy: By applying the average comparison
precision metric, we found that overall, participants were more
precise in their judgments using heat maps (Mean: 0.864,
Confidence Interval: [0.841,0.886]) and slope plots (0.860,
[0.837,0.882]) with significant differences from Taylor plots
(0.806, [0.784, 0.828]) at p <0.05 (Figure 5), thereby partially
supporting our hypothesis H1a. By looking at the taskwise
breakdown, we can see that: i) for Task A, performances us-
ing heat maps (0.857, [0.818,0.896]) and Taylor plots (0.852,
[0.813,0.891]) were slightly more accurate than for bar charts
(0.800 [0.761,0.839]) and slope plots (0.823, [0.784,0.862]),
ii) for Task B, all plots exhibited comparable levels of accu-
racy, and participants were more accurate than for Tasks A
and C, thus supporting H1b; and iii) for Task C, heat maps
(0.768, [0.729,0.806]), slope plots (0.784, [0.745,0.823]) and
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Figure 7. Experience and Familiarity Vs Subjective Impressions. Error
bars represent 95% confidence intervals. Significant results (p < 0.05)
annotated on the plots show that low experienced participants were less
comfortable and confident with Taylor plots as opposed to slope plots.
Across different familiarity groups, slope plots show comparable, if not
higher perceived accuracy and efficiency ratings, as opposed to more
familiar plots.
bar charts (0.780, [0.741,0.818]) led to significantly greater
accuracy than Taylor plots (0.615, [0.576,0.654]). Across
all tasks, we failed to find an overall effect of familiarity on
performance accuracy. By analyzing the effect of domain ex-
perience, we found different trends for Task A and Task C.
For Task A we found that that performances were compara-
ble across all visualizations in both experience groups except
for participants with greater domain experience were more
accurate with heat maps (Mean = 0.86) than the bar charts
(Mean = 0.76). But f For Task C, we found that across both
experience groups, participants performed significantly better
using slope plots, heat maps and bar charts, than the Taylor
plots. Therefore we found limited support for H1c.

Perceived Comfort, Confidence, Accuracy and Efficiency:
Figure 7a shows confidence and comfort levels for all four visu-
alizations. The low experience group rated the slope plot high-
est in comfort (Mean: 3.61, Confidence Interval: [3.43,3.80])
and confidence (3.56, [3.37,3.74]), with significant differ-
ences from the Taylor plot for comfort (2.91, [2.72,3.10];
p <0.05) and confidence (2.97, [2.79,3.16]; p <0.05). For
the high domain experience group, the perceived levels of com-
fort and confidence were comparable across the Taylor plot,
heat map, and slope plot, with significant differences only with
respect to the bar chart. We therefore did not find evidence
to support H2. Participants tended to rate the slope plot and
heat map significantly higher (p <0.05) in perceived accuracy
and efficiency, compared to the Taylor plot and bar chart. We
however could not find support for H3a, as perceived accuracy
for heat maps and slope plots was comparable. We created low
and high familiarity groups for both the Taylor plot and heat
map, using the familiarity rankings assigned by the partici-
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Figure 8. Post-completion preference rankings and the discrepancy
between rankings based on familiarity and preference. Error bars rep-
resent 95% confidence intervals. We can that irrespective of experience
many participants tended to have a high preference for the relatively
unfamiliar slope plots.

pants. These two visualizations that had a sufficient number of
participants in each category to achieve statistical significance.
As shown in Figure 7, we found that participants with greater
familiarity with a plot type perceived that visualization to have
higher accuracy and efficiency. However, for the high familiar-
ity groups we can observe that participants’ perceived levels of
accuracy and efficiency with slope plots were comparable to
either Taylor plots or heat maps. For both the low familiarity
groups, in most cases participants expressed greater levels of
perceived accuracy and efficiency with the slope plots. These
findings supported our hypothesis H3b.

Familiarity and Preference: Figure 8a shows the distribution
of the familiarity and preference rankings for each visualiza-
tion. The slope plot clearly ranks much lower in familiar-
ity, being ranked first or second for familiarity by the fewest
participants (27%), followed by the Taylor plot (48%), heat
map (52%), and bar chart (74%). As observed in Figure 8a,
participants’ preference rankings differed substantially from
their pre-study familiarity rankings for slope plots. Overall,
the slope plot was ranked first for Task B and Task C, which
both involved dissimilarity identification, and was ranked sec-
ond for Task A, which involved similarity identification. When
identifying their overall most-preferred visualization, 33% of
participants selected the slope plot, which is only 4% less than
the heat map. Thus our findings did not support H4a. We
compared the pre-study familiarity and post-study preference
rankings using the discrepancy metric. A greater or positive
discrepancy score indicates a high preference for a relatively
less familiar visualization, while a lower or negative discrep-
ancy score is associated with a low preference for a relatively
more familiar visualization. As we observe in Figure 8b, slope
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Figure 9. Discrepancy between rankings derived from objective accu-
racy and perceived accuracy, preference, and familiarity. Error bars
represent 95% confidence intervals. The low experience group was least
discrepant about their accuracy using slope plots as evidenced by the
least mean discrepancy score. Slope plots also showed: i) consistently
low discrepancy levels between objective accuracy and preference across
both experience groups, signifying that preference for slope plots also
matched performance accuracy, and ii) consistently high discrepancy
levels between objective accuracy and familiarity, signifying that lack of
familiarity was not a barrier in accurate performance using slope plots.

plots (0.264, [0.153,0.376]) attained the greatest positive dis-
crepancy, with significant differences from the Taylor plot
(0.011, [−0.100,0.123]) overall (p < 0.05) and for low do-
main experience group (p < 0.05) (thus supporting H4b), and
from heat map for high domain experience group (p < 0.05).

Discrepancy between Objective Accuracy and Subjective
Impressions: We found that the discrepancy between objec-
tive and perceived accuracy (∆ObjSubjAccuracy) was lower
for more experienced participants, and that within the high
experience group, there was less variability in the discrepancy
scores across all visualizations. As shown in Figure 9,for less
experienced participants, slope plots (0.247, [0.175,0.320])
were the least discrepant, with significant differences from
all other visualizations, Taylor plots (0.392, [0.319, 0.465]),
heat maps (0.393, [0.321,0.466]), and bar charts (0.418,
[0.345,0.491]), at (p < 0.05). We therefore did not find evi-
dence to support H5a as there were significant discrepancies.
We also found limited support for H5b: across both experi-
ence groups, there was significantly high discrepancy between
objective accuracy-based ranking and subjective preference-
based rankings for bar charts (p < 0.05). For the low expe-
rience group we observed a similarly high discrepancy for
the Taylor plots (0.455, [0.362,0.548]), with significant differ-
ences from heat maps (0.146, [0.053,0.239]) and slope plots
(0.235, [0.142,0.328]). The discrepancy between familiar-
ity and objective accuracy for slope plots (Figure 9) was the
highest for both experience groups, implying that irrespective
of participants’ experience, slope plots ranked lower with re-
spect to familiarity, but ranked higher relative to more familiar
visualizations for performance accuracy.



DISCUSSION
In this section, we reflect on our key findings and analyze
participants’ comments provided at the end of the study.

Effect of Experience and Familiarity: We found that do-
main experience and familiarity with visualizations did not
drive performance accuracy (Figure 5, 6) for multi-way com-
parison tasks. Across all groups, participants reported sim-
ilarly high levels of comfort, confidence, accuracy, and effi-
ciency with the relatively unfamiliar slope plots (Figure 7).
On the other hand, we found that less experienced scientists
tended to underestimate their performance accuracy for Taylor
plots. This could possibly be caused by their lower confidence
and comfort ratings (Figure 7a) due to the visual complexity
of Taylor plots or the associated learning curve involved in
their interpretation for scientists who have less experience
with this visualization. From previous research, we know high
perceived accuracy, comfort, and confidence are antecedents
of human-machine trust [20]. These findings lead us to an intu-
ition that using visualization design best practices can improve
accessibility, potentially overcome the barrier of low famil-
iarity, and inspire trust in domain experts for use in deriving
analytical insights [8].

Implications for Model Fidelity Visualization: In their final
comments almost all participants (44 out of 47) mentioned
that the slope plot was useful for easily comparing models and
variables and for identifying variability across models. Ex-
amples of the answers include: “It’s much easier to compare
many models on this plot. The other plots I had to compare
pairwise in order for it to make sense to me; here, we get many
models all at once which is more efficient (P33).”. We also
found that the use of small multiples (Taylor plots, bar charts)
or large singles (heat maps, slope plots) [31] did not seem to
have an effect on objective accuracy. Small multiples of bar
charts were as accurate with the large single approach of slope
plots for Task C, while the large single approaches were as
accurate than other visualizations for Task A. Further research
is needed to explore the relative advantages and disadvantages
of these approaches in the context of visual comparison tasks.
In the context of subjective impressions, however, there was
a stronger preference for the large single approach for com-
paring many models and many variables as small multiples
entail significant comparison complexity. This was implied by
the following observation by one of the participants: “Seeing
simultaneous patterns in many/many models/variables takes
a lot of concentration on shapes of distributions of dots and
corresponding colors of the dots - challenging!”. Several par-
ticipants with longer domain experience, however, commented
that for a smaller number of output variables and models, they
might still prefer Taylor plots or bar charts.

Adoption of Unfamiliar Visualization: Overall, we found
that most participants had a high degree of preference for the
slope plots irrespective of their familiarity with other plots or
experience, which is indicative of potential adoption [25] by
scientists in the future. Many participants mentioned the slope
plot may complement other visualization approaches, or be
well-suited to particular tasks. One participant commented
that the “[s]lope plot does not give an immediate intuitive

understanding of the performance of a particular model, as the
heatmap does. I would use it in combination with a heatmap as
a more accurate but less intuitive visualization with strength in
showing variability of variables (P10).” “This is probably the
best visualization for looking at the spread amongst models
with regards to a specific variable (P4).”, etc. In keeping
with this sentiment, our collaborators have begun to adopt the
slope plots as part of their workflow, and we are currently
planning follow-up research on how different similarity-based
visualizations (slope plots, heat maps) can be combined for
exploring model fidelity patterns at different levels of detail.

CONCLUSION AND FUTURE WORK
We have presented a comprehensive analysis of objective and
subjective measures of the efficacy of alternative visualization
designs for climate model fidelity comparison and how these
measures are mediated by the scientists’ length of domain
experience and prior familiarity with each visualization. Our
significant findings are as follows: i) Familiarity did not drive
objective accuracy or self-reported comfort with, confidence
in, or preference for any visualization. ii) Objective accuracy
on all tasks was similar across all visualizations, except that
scientists, irrespective of the length of their domain experi-
ence, were less accurate in identifying dissimilar models using
Taylor plots compared to other visualizations. iii) Scientists
with greater domain experience were generally less discrepant
about their perceived accuracy than less experienced scien-
tists, while the latter group was least discrepant about their
perceived accuracy with the unfamiliar slope plots. iv) The
unfamiliar slope plot was the most frequently preferred visu-
alization for the tasks presented in this study, and exhibited
comparable or higher levels of objective accuracy with respect
to familiar visualizations, for both highly experienced and
less experienced scientists. An appreciation and preference
for the slope plot were also expressed in many of the written
comments submitted by the participants. This suggests that
collaborative design of optimal visualizations, adapted to sci-
entific tasks, can potentially lead to a broader acceptance and
adoption of new designs within a scientific community.

In the future, we would like to extend these findings to other
domains, and determine whether greater comfort and confi-
dence levels also lead to greater scientific consensus. Espe-
cially in climate modeling, a recurring problem is the lack of
well-defined consensus on the features that characterize good
or bad models. We believe that effective visualizations can aid
scientists in more objectively identifying patterns of model fi-
delity and their causes, leading to greater consensus regarding
model fidelity, and improved efficiency in model calibration
and assessment activities. This will ultimately contribute to
improved understanding of global climate change patterns.
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