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Abstract

Inter-comparison and similarity analysis to gauge consensus among multiple simulation models is a critical visu-
alization problem for understanding climate change patterns. Climate models, specifically, Terrestrial Biosphere
Models (TBM) represent time and space variable ecosystem processes, like, simulations of photosynthesis and
respiration, using algorithms and driving variables such as climate and land use. While it is widely accepted that
interactive visualization can enable scientists to better explore model similarity from different perspectives and
different granularity of space and time, currently there is a lack of such visualization tools.
In this paper we present three main contributions. First, we propose a domain characterization for the TBM
community by systematically defining the domain-specific intents for analyzing model similarity and by translating
them to visualization-specific tasks. Second, we define a classification scheme that can be leveraged for combining
multiple facets of climate model data in one integrated framework that allows scientists to perform multiple levels
of similarity analysis for these models. Finally, we present SimilarityExplorer, an exploratory visualization tool
that facilitates similarity comparison tasks across both time and space through a set of coordinated multiple views.
We present a detailed case study from three climate scientists who used our tool for a month for gaining scientific
insights into model similarity. Their experience and results validate the effectiveness of our tool.

1. Introduction
Inter-comparison of model simulations is a critical prob-
lem in the climate science domain for understanding climate
change patterns. Consensus among model results is an im-
portant metric used for judging model performance. Anal-
ysis of model output similarity and dissimilarity is a com-
plex problem because of the multiple facets involved in such
comparisons: space, time, output variables, and model sim-
ilarity. The goal of this work is to provide an interactive vi-
sualization tool that integrates space, time, and similarity,
making it easier for climate scientists to explore model rela-
tionships from multiple perspectives.

The output of our work is a result of a six-month-long in-
teraction between visualization researchers and climate sci-
entists, including terrestrial biosphere modelers. Modelers
generally perform their analyses by looking at spatial and
temporal aspects in isolation, by running scripts, such as
MAT LAB and R on the data and by manually setting param-
eters. The first step during the iterative development of our
tool was to provide the scientists with an interactive interface
for selecting parameters and filtering the data. This was not

sufficient as our interactions revealed that modelers needed
a tool for analyzing both space and time within a single in-
terface in order to judge multi-model similarity.

Existing visualization tools are only capable of inte-
grating one or two facets as pointed out by Kehrer and
Hauser [KH13]. Multifaceted data analysis is inherently
challenging on two counts: i) preserving the mental model
about the different factes, like space, time, model similarity
requires an encoding strategy that preserves visual symme-
try, and ii) exploring these facets at multiple levels of gran-
ularity and understanding their relationships necessitates a
systematic interaction strategy.
To address these challenges, we developed the SimilarityEx-
plorer to provide a multi-faceted visual analysis of climate
models, specifically, terrestrial biosphere models (TBMs).
Using our tool, climate scientists were able to get an
overview of model similarity across space and time, and then
drill down to further explore where, when, and by how much
models were similar or different. A seamless integration and
exploration of these facets in SimilarityExplorer let them
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Figure 1: Visualizing the complexity of multifaceted cli-
mate data in terms of models, regions, time and variables.

generate and explore new hypotheses about model similar-
ity which was not possible before.

Our work consists of three key contributions: i) as part of
the domain characterization [Mun09] of climate model inter-
comparison, our first contribution is a systematic presenta-
tion of the domain-specific intents of climate scientists and
the corresponding facets underlying the data (Section 4), ii)
we bridge the intents and facets with the visualization tasks
and design through a classification scheme (Section 5); and
iii) SimilarityExplorer is a tool that implements this classi-
fication. Our interactions with climate scientists were con-
ducted before, during, and after the implementation phase
for iterative refinement of the tool based on their feedback.
In light of this, we present two case studies which helped elu-
cidate and validate the benefit that scientists obtained when
using SimilarityExplorer (Section 6).

2. Related Work
In this section we discuss the relevant related work with re-
spect to spatiotemporal and multifaceted data visualization
and tools available for climate data.
Simultaneous encoding of spatial and temporal relation-
ships: Visualization of spatiotemporal data has witnessed a
lot of research over the years. Peuquet [Peu94] had intro-
duced the popular triad representation framework which is
a general formalization of temporal dynamics in geographic
information systems. In our tool we imbibe the concepts of
when, where, and by how much models are similar. The need
to integrate space and time through an exploratory analysis
tool was also proposed by Andrienko et al. [AAD∗10]. They
devised a visual analytics [AA13] framework for explor-
ing spatiotemporal data through spatially referenced time
series. Similarly, visual analytics approaches for event de-
tection [MME∗12, MRH∗10, MHR∗11] have been proposed
where spatial representation of the data is provided in con-
junction with features for observing temporal trends and
anomalies. While most of this work focused on direct en-

Figure 2: Similarity computation. Illustration of spatial
and temporal correlations are computed between models M1
and M2 after aggregating the temporal information. The spa-
tial granularity is preserved at the cost of temporal informa-
tion, and vice versa.

coding of the data, either spatially or temporally, Andrienko
et al. applied self-organizing maps [AAB∗10], for provid-
ing complementary perspectives on spatial and temporal re-
lationships which is the guiding principle in SimilarityEx-
plorer. The complexity in our work evolves from the fact that
the scientists needed to understand the evolution of both spa-
tial and temporal relationships simultaneously. This necessi-
tated that the visualization provided an overview of spatial
and temporal relationships, and then also allowed flexible
interaction for exploring these relationships over both space
and time.
Integration of spatial and non spatial data: There ex-
ists other approaches towards building visualizations for in-
tegrating spatial and non-spatial data [MMH∗13]. Guo et
al. [GCML06] proposed a generalizeable visual analytics
approach for integrating techniques from cartographic, vi-
sualization techniques and machine learning. That method-
ology is general and can be applied to spatiotemporal data.
Most of the existing tools only integrate one or two different
facets [KH13]. In the SimilarityExplorer we integrate four
different facets: space, time, multiple variables, and model
similarity, which are crucial for visual comparison of the
different properties of models. Our technique is similar in
principle with Kehrer et al.’s work on visual analysis of het-
erogeneous data, multi-model scientific data with examples
from climate research data [KMD∗11]. Kehrer et al. focus on
providing multiple perspectives into statistical relationships
between multi-run and spatially aggregated simulation data
through different interactive views. In SimilarityExplorer,
similar to multi-run data, we focus on multi-model data; and
in addition to spatial relationships and patterns, we consider
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time, multiple variables and different visual approaches to-
wards encoding similarity and facilitating visual comparison
through the use of small multiples [Tuf83].
Visualization solutions for climate data: For addressing
the needs of the climate research community, there has been
some work on hypothesis generation [KLM∗08], task char-
acterization [SNHS13], and tool development [LSL∗10].
Steed et al. introduced EDEN [SST∗12], a tool based on
visualizing correlations in an interactive parallel coordi-
nates plot. Their focus is on a single model and analysis
of the interdependence among variables. There also exists
some general visualization tools such as Paraview [Kit],
Visit [Law] and VisTrails [Vis] which offer some specialized
climate visualizations but almost all of them only present
the data without supporting any analysis. Those special-
ized packages were integrated in a provenance-enabled cli-
mate visualization tool UV-CDAT [WBD∗13]. However,
like most other tools, UV-CDAT does not support multi-
model analysis. It also does not support multivariate anal-
ysis and dynamic linking between the views. This is cru-
cial in the case of model inter-comparison as it requires a
seamless transition among different facets facilitated by in-
tuitive interaction methods, which is implemented in Simi-
larityExplorer. Through a closely-knit collaboration with cli-
mate scientists we were able to address the need for tools
that emerge from genuine and interdisciplinary collabora-
tion [OMBE11, MMDP10], for solving the problems with
such complex data.

3. Background of Model Inter-Comparison Project
We collaborated with 3 climate scientists from the Oak
Ridge National Lab as part of the Multi-Scale Synthesis
and Terrestrial Model Inter-comparison Project (MsTMIP).
Each of them have at least ten years of experience in cli-
mate modeling and model inter-comparison. MsTMIP is a
formal multi-scale synthesis, with prescribed environmental
and meteorological drivers shared among model teams, and
simulations standardized to facilitate comparison with other
model results and observations through an integrated evalu-
ation framework [HSM∗13].

3.1. Data
The data consist of simulations from 7 different TBMs for
over 20 years at monthly temporal resolution, collected over
a spatial resolution of 0.5 degree. Each produces multiple
output variables, of which three are relevant for the analysis
presented here. For segmenting the globe, the scientists use
11 different eco-regions. The temporal granularity of inter-
est to them were annual, seasonal, and monthly. As shown in
Figure 1 each model can be represented by a spatiotemporal
volume over latitude, longitude, and time. Since each model
is associated with multiple output variables, each model can
be thought of as being a vector of such volumes. The basic
goal of climate scientists is to efficiently subset this array
of cubes along multiple dimensions, in order to understand

model similarity based on multiple facets: when are models
similar, with respect to seasons and months, where are mod-
els similar, with respect to regions, why are models similar,
with respect to the output variables.

3.2. Model Similarity
As a first step in our design study [SMM12], we discussed
with the climate scientists about their existing approaches
for understanding model similarity. To reduce complexity
of the data, they are used to compressing space and time.
It emerged that, from a temporal aspect they are mostly in-
terested in comparing model behavior for seasons or months
aggregated across all years. In this context, they perform two
distinct operations on the data for analyzing similarity from
the spatial and temporal perspectives. These operations are
sketched in Figure 2 and described below:
a) Spatial Correlation: For this step, as shown in Figure 2a
the data is pre-processed in such a way that temporal in-
formation is aggregated but spatial granularity is preserved.
For each point on the map, the average value for a time pe-
riod is computed. Temporal granularity can range from long-
term mean (value at one point is the average for all months
and all years within the time period), long-term monthly
mean (12 monthly maps, with each map representing an av-
erage month for the time period), and seasonal mean (four
maps with each map representing an average season for the
time period). Next, correlation between maps of two models
is computed using the Pearson correlation coefficient.
b) Temporal Correlation: In this case, the data pre-
processing helps aggregate spatial information but preserves
temporal granularity (Figure 2b). For the map at each time
step, a spatially averaged or summed value is computed.
Next we compute a time series, which varies based on the
temporal granularity: one value for long-term mean, 12 val-
ues for long-term monthly mean and four for seasonal mean.
At the end the models are represented by their time-series
signatures. While there are multiple ways for comparing
time-series signatures of two models, in discussion with the
scientists, we chose correlation as the measure for temporal
similarity.

4. Domain Characterization
The initial discussion about the data characteristics was fol-
lowed by an analysis of the domain-specific intents through
face-to-face interactions and conference calls. In this sec-
tion, we present the first contribution of our work, which is a
characterization of the domain-specific intents of the climate
scientists and the underlying data facets.

4.1. Domain Specific Intents
We identified four major intents of the climate scientists in
the context of model inter-comparison, which are as follows:
Q1: In general, modelers would like to know the degree of
spatial and temporal correlation of models with respect to
any output variable.
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Tasks Facets Visualization Design
Space Time Variables Similarity Views Comparison method

identify(p)
g/r a/s/m single

pairwise matrix (maps)
explicit encoding

identify(t) pairwise matrix (area graph)
identify(p, t) multi-way projection

compare(p,v) g,r a,s,m multiple pairwise
matrices (map)

juxtaposition
smlt:maps

compare(t,v) g,r a,s,m multiple pairwise
matrices (area graph)

juxtaposition
smlt:area graph

associate(p)
r s,m single

multi-way, pairwise parcoords, matrix juxtaposition
associate(t) pair-wise time-series, matrix superposition
distribution(p,v)

r s,m multiple
multi-way, pairwise parcoords juxtaposition

distribution(t,v) pairwise time-series superposition

p: Space t : Time v : Variables g: global r : regional a: annual s: seasonal m: monthly smlt : small multiples

Table 1: Translating tasks into visualization design through a classification scheme. The eventual visualization design is
based on the different facets. For this study, model output has different space and time granularity which each need to be
accounted for in the visualization design.

Q2: With multiple models, they would additionally like to
know which models are similar, and when, where, and why
they are similar.
Q3: They would want to understand if different sub-regions
agree or disagree with the global temporal or spatial correla-
tions, or with the same for other sub-regions.
Q4: Scientists do not always trust the level of abstraction at
which similarity is deduced, as there can always be anoma-
lies that are not captured. Thus they wanted to look at the
original distribution of the data to verify their hypotheses
and validate their findings.

4.2. Facets: Space, Time, Variables, Similarity
The inherent complexity involving inter-comparison of cli-
mate models stems from the multifaceted data underlying
the climate models. The facets [KH13] relevant for the cli-
mate model data are space, time, variables, and similarity
as shown in Table 1. Space and time also involve different
levels of granularity. The different levels granularity for spa-
tial data are global (g) and regional (r) and that for tem-
poral data are annual (a), seasonal(s), and monthly (m), as
shown in Table 1. Additionally, there are three output vari-
ables for each model. Similarity among models is the other
facet which can be classified based on the following perspec-
tives: i) pairwise: in this case scientists are interested in ob-
serving similarity between each pair of models and ii) multi-
way: in this case scientists are interested in observing simi-
larity among all models taken together, and iii) one-to-many:
in this case scientists might choose one model as a reference.
Our collaborators revealed that the third option is rarely used
in comparison of TBMs, since no model is known a priori to
be any better as a “reference” than any other. As a result we
did not implement this option in the tool.

5. Visualization Tasks and Design
The next step in our study was to connect the intents and
facets though concrete visualization tasks and subsequently

translate the tasks to visualization design. This led to our
second contribution: a classification scheme for integrating
tasks, facets, and design (Table 1).

5.1. Tasks
For identifying the tasks, we took inspiration from Zhou and
Feiner’s taxonomy [ZF98], among which identify, compare,
associate, and distribution are relevant here. Notably, the
transition from Q1 to Q4 also indicates increasing complex-
ity of the visualization tasks, which we describe below. In
table 1 the abbreviation after task name indicates the facet
they operate upon.
Identify: The intent Q1, that is understanding model-model
similarity is reflected in SimilarityExplorer by three variants
of the identification tasks: finding the degree of spatial cor-
relations among models (identify(p)), finding the degree of
temporal correlation among them (identify(t)), and also find-
ing the degree of overall spatiotemporal correlation (iden-
tify(p, t)). While the first two tasks reflect pairwise similar-
ity, the last one expresses multi-way similarity. In Table 1,
the symbol / reflects an OR operation. So in case of the iden-
tification tasks any granularity of space (g/r) and time (a/m/s)
can be selected using different filters.
Compare: The intent Q2, that is understanding output-
output similarity is reflected in SimilarityExplorer by the
comparison tasks: comparing the degree of spatial cor-
relation (compare(p,v)) and temporal correlation (com-
pare(t,v)) among multiple output variables. These tasks can
involve multiple selections of granularity of space and time
indicating an AND operation as shown by the comma (g,r
and a,s,m). For example, global correlation of models with
respect to one output variable can be compared with the re-
gional correlation.
Associate: The intent Q3 involves combining the under-
standing of similarity by analyzing the region-wise anoma-
lies and trends for the models. This task applies to both spa-
tial (associate(p)) and temporal correlation (associate(t))
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Figure 3: SimilarityExplorer is composed of a set of filters (a), meta views (b, c, d) and data views (e, f). The meta views are
b) a matrix view for showing pairwise similarity, c) a projection view for showing multi-way similarity, and d) a small multiples
view for showing region-wise spatiotemporal similarity. The data views are: e) a parallel coordinates view for showing multi-
model distribution of each variable, and f) a time series for showing temporal distribution of any pair of models.

for which different views are instantiated. These involve
mainly drill-down and brushing operations and are per-
formed at the regional granularity of space and monthly or
seasonal granularity of time.
Distribution: The intent Q4 is reflected by the distribution
task that helps provide a multi-way perspective on behav-
ior of regions with respect to multiple models (distribu-
tion(p,v)), and on pairwise model-model relationships for
all regions. Scientists could also get additional information
about outlying regions and models using this task, which al-
lows exploration at a greater level of detail than the other
tasks. This task also involves drilling down to the temporal
distribution of a pair of models (associate(t,v)).

5.2. Visual Encoding Challenges
The challenges in translating the tasks to different aspects of
visual encoding were met by integrating the iterative feed-
back from the scientists’ on our intermediate prototypes. We
justify our key design choices with respect to the following
aspects.
i) Separating space and time: The tasks described above
required us to separate as much as possible, the facets of
space and time, although in the final analysis, they are inex-
tricably linked. A climate scientist remarked that he wanted
no time in his analysis, but wanted to see only space. Upon
reflection, we realized that what this user really wanted was
more like all time, i.e., spatial correlations which had been
composited over the entire time interval, with no temporal
subsetting. In this sense, then, the spatial correlations shown

are composited over time, and the temporal correlations are
composited over space. This had to be reflected in the visual
representation by having a separation between spatial and
temporal encodings.
ii) Facilitating systematic interaction: Both spatial and
temporal relationships could vary over space (e.g., regions)
and time (e.g., seasons). This decomposition needed to be
reflected through brushing over space and time and selec-
tions of regions and time-steps.These operations also had to
be associative: any spatial operation could adapt the tempo-
ral similarity to reflect the selected region and any temporal
operation could adapt the spatial side to represent the corre-
lation for a particular time step. Another role of interaction
was to allow scientists explore different granularity of space
and time. This was facilitated by interaction operations such
as filtering and drill-down to additional views showing dif-
ferent levels-of-detail.
iii) Preserving the mental model: This was a critical design
issue due to the interplay between space and time, and the
need to associate them in a holistic view [AAB∗10]. Both
geographical maps and time-series could be used to repre-
sent variation of either the spatial or temporal correlation.
In one of the interactive sessions we presented mock-ups
that used time-series to represent the variation of both spatial
and temporal correlation. But without consistent visual cues
linking the representation to space or time, they were con-
fused: “I like this but I have to wrap my head around what
the visualization is telling me: is it space or is it time? It will
be much better if I don’t have to process this in my mind”
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Figure 4: Preserving the mental model and symmetry about spatial and temporal similarity through use of maps for
representing space and use of area graphs for representing time, and by reflecting the change in granularity on both sides.

We resolved this issue by collectively taking a design deci-
sion: for temporal correlation we would display the variation
of the correlation over time by displaying a time-series that
adapts to the temporal granularity (annual, months, seasons).
On the spatial side, we would display maps showing spatial
correlation for the selected time step. Thus we use consistent
spatial cues in the form of maps and temporal cues in the
form of time series (Figure 3b,d). By brushing over time, we
would see the change in spatial correlation as the displayed
map adapts to the selected time step.
iv) Retaining symmetry while drilling down: Preserving
a symmetrical relationship among the different granularity
of space and time through consistent visual representation
was essential for scientists to keep track of any change that
occurred. The change of spatial granularity is reflected by
transforming the maps to represent the selected regions. The
change of temporal granularity is reflected by transforming
the number of steps in a time series (Figure 4).

5.3. Comparison methods
Facilitating visual comparison among the models and output
variables is one of the main goals of this work. We followed
Gleicher et al.’s taxonomy [GAW∗11] of visual comparison
methods for guiding the representation of the different as-
pects of similarity and the eventual placement of the differ-
ent views. As shown in Table 1, the three comparison meth-
ods that are used are explicit encoding, juxtaposition and
superposition. Explicit encoding is used to encode the de-
gree of similarity among the different views with the help of
correlation metrics. For comparison tasks multiple views are
juxtaposed next to each other. We represent multiple time se-
ries by superposing them in the same view (Figure 3f). Dif-
ferent interaction mechanisms like filtering, brushing, link-
ing, and drilling-down allow scientists to browse through the
multiple perspectives of similarity.

6. SimilarityExplorer
Our third contribution is the design of the SimilarityEx-
plorer, an exploratory visualization tool for analyzing mul-
tifaceted, multi-granularity, climate model similarity. This
design was guided by the domain characterization pre-
sented in Section 4, and was informed by the classifica-
tion scheme described in Section 5. The scientists’ analysis

needs motivated our design decision of using multiple linked
views [Rob07], a visualization approach that is appropriate
for flexible analysis of multifaceted data. There is an implicit
hierarchy [Shn96] in the type of views in SimilarityExplorer,
which are similarity views and data views.

6.1. Similarity View
With the help of similarity views, we explicitly encoded spa-
tial and temporal correlation between models, based on the
computation we had described in Section 3.2. The different
similarity views are described below:
Matrix View: A model is a primary unit of comparison. Our
collaborators needed a view that would show both spatial
and temporal correlation for the models in one integrated
view, that would be flexible enough to adapt to different
granularity of space and time. We took inspiration from the
multi-form matrix [MXH∗03] designed by MacEachren et
al. and designed a matrix view that reflects pairwise simi-
larity between models (Figure 4). In keeping with the idea
of preserving the mental model about space and time, it
is divided into two halves across the diagonal: the cells in
the lower triangle represent the pairwise spatial correlation
through color-coded maps and the cells in the upper trian-
gle represents the temporal correlation between two models.
The color coding uses a continuous color map( [HB03]) and
reflects the degree of correlation, with orange for correla-
tions on the spatial side and purple for correlations on the
temporal side. The color map adapts to the range of corre-
lation values: if there are negative correlations, a divergent
color map is used.
Scientists can perform the following tasks using the matrix
as shown in Table 1: i) identification tasks by filtering the
view by different regions or time and ii) comparison tasks
launching multiple matrices of different variables (Figure 6).
For the latter case, we could have encoded a derived statistic
that would explicitly encode the average correlation based
on multiple variables, in a single matrix. However, the sci-
entists were interested in analyzing the high or low correla-
tions for the individual variables. Thus we use the option of
juxtaposing multiple matrices for the different variables.
The effect of changing spatial and temporal granularity are
shown in Figure 4. The initial view shows the view for
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Figure 5: Data View: Parallel Coordinates. The ability to examine the region-wise range and distribution of variables enables
climate scientists to relate the meta views to the patterns in the data view, i.e., parallel coordinates, and additionally, find
clusters and outliers. For NPP, we can see a cluster of polylines for the regions South American Tropical and Tropical Asia for
all models, indicating multi-model similarity for those regions.

global, annual correlation. On selection of a sub-region,
i.e., Europe, maps for Europe are shown on the spatial side,
while the temporal side gets updated to show the annual av-
erage correlation for Europe. On selection of seasonal gran-
ularity, the area graph gets updated to a time-series repre-
senting the four seasons and shows the maps for the selected
season. Thus spatial and temporal operations are symmetri-
cal: they affect both sides of the matrix and the color-coding
reflects the correlation for the selected time step.
Projection View: After presenting the matrix view to our
collaborators, they felt the need for representation which
gave a high-level overview of all models with respect to each
other. This prompted us to design the projection view (Fig-
ure 3c) that shows multi-way similarity among models.
Thus, it overcomes the limitation of the matrix view, which
is only able to show pairwise patterns. As mentioned in Ta-
ble 1, the projection view is used to mainly identify which
models are more similar, triggering the subsequent analysis
steps for exploring the reason for similarity. The projection
view is generated by using the spatial or temporal correla-
tion between models as the distance metric and then using
multidimensional scaling (MDS) for mapping the data points
onto a two-dimensional scatter plot. The physical proximity
of models encodes their overall similarity. Initially, some of
our collaborators were confused by the projection view but
on seeing the merits of getting a multi-way overview of sim-
ilarity they became more appreciative of its utility. One of
them commented: “The axes have no meaning here and we
are not used to seeing this, but I really like the all-way com-
parison we can perform which we could not do before”. This
view adapts to different selections of time steps or regions.
Small Multiples View: The small multiples ( [VDEVW13],
[Tuf83] view as shown in Figure 3d supports drilling down
into the correlation patterns for each individual region. The
drill down operation can be initiated from both the spatial
and temporal sides of the matrix: drill down from the spa-
tial side shows a map representing spatial correlation for a
region and a selected time step; and that from the tempo-
ral side shows time series representing variation of tempo-
ral correlation for a region. One of the design options was

to show a global map for the spatial drill down, with in-
dividual regions being color-coded based on spatial corre-
lation between two models. However, this would not have
been symmetrical with the temporal side, as there would be
a map for each time-step and it is visually complex to rep-
resent so many maps, and still preserve the mental model
about the relationships. Using this small multiples view, sci-
entists can perform several comparisons: i) by selecting a
cell within a matrix the region-wise spatial and temporal
correlation for that pair is shown, which lets them compare
anomalies between global and regional patterns, ii) by com-
paring across space and time, scientists can understand the
cause of anomalies , and iii) by comparing these small multi-
ples for different variables, scientists can hypothesize about
which output variables affect similarity of models across dif-
ferent regions.

6.2. Data View
Using the data view scientists can drill down to the distribu-
tions of different variables and gain information about out-
liers which the similarity views might not show. Below we
describe the data views:
Parallel Coordinates: For each output variable, we use par-
allel coordinates (Figure 5) for enabling scientists to ana-
lyze the multi-model similarity based on the region-wise dis-
tribution of the variable. In discussion with the scientists,
we found that multivariate relationships among the different
output variables are not of interest in their analysis. Instead
of modeling parallel coordinates conventionally, where vari-
ables are mapped on to the vertical axes and data objects are
mapped to polylines, we use one parallel coordinates plot
per variable. We use each vertical axis to represent a model
and a polyline connecting the different axes represents the
value of a variable for a given region. We compute a global
scale across all models, for mapping the values so that they
are comparable. The regions are represented by a categorical
color scale. The number of data points, that is the number of
polylines, depends on the temporal granularity selected. For
annual correlation, there is only one polyline per region, for
seasons there are four, and in the case of the lowest level of
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Figure 6: Comparing multiple output variables for differ-
ent months and analyzing their distribution (Q2, Q4).

temporal granularity, months, there are twelve polylines for
each region. Brushing by time and region allows the scien-
tists to look at only specific instants of time, a few regions,
or both. By observing the trajectory of polylines, scientists
could perform a multiway comparison of region-wise dis-
tribution across models. By linking the parallel coordinates
with the matrix view, they can also associate the degree of
correlation among models with the data distribution across
the different regions. In case of comparison of multiple vari-
ables, multiple parallel coordinates plots can be instantiated.
Time Series: The temporal correlation represented by the
area graph in the matrix is based on a pair of time-series
for each time-step. Since correlation is just one of the ways
of representing the relationship between two time-series, the
scientists were also interested in looking at the original time-
series to find any additional information, like the high or low
temporal distribution, or any anomalies. Based on this re-
quirement, we designed a time series view that shows the
temporal distribution of any variable for a pair of models.
The view is instantiated when any cell on the temporal side
of the matrix is selected (Figure 3f).

7. Case Study
We describe the features of the SimilarityExplorer with two
different scenarios that our climate scientist collaborators
used for analyzing model similarity.

7.1. Understanding Output-Output Similarity (Q2,Q4)
The climate scientists wanted to compare how models be-
have with respect to two output variables: Net Primary Pro-
ductivity (NPP) and Net Ecosystem Exchange (NEE) for the
month of September. Considered to be two of the most im-
portant “vital statistics” of ecosystems, NPP represents the

amount of productivity that is available for growth, while
NEE reflects the input/output balance of carbon to and from
the ecosystem. Both output variables are critical for under-
standing the atmospheric carbon cycle. As shown in Fig-
ure 6, all the models seemed to be more spatially corre-
lated with respect to NPP (on the top) than NEE (on the bot-
tom). This prompted the scientists to look at the region-wise
distribution of the variables for confirming this. The paral-
lel coordinates plot for NPP (Figure 5, on the left) showed
a high number of parallel lines between highly correlated
models like BIOME-DLEM and DLEM-CLM. But the high
correlation for BIOME-DLEM is absent for NEE (Figure 5,
on the right), where lines are more scattered in different di-
rections, reflecting the different input/output balance points
for carbon across ecosystems in different regions. By using
parallel coordinates plot, the scientists found that NPP (Fig-
ure 5, on the left) shows higher spread among the values than
NEE (Figure 5, on the right). The high spread and high val-
ues of NPP for the Visit model appear to be outliers. The
scientists concluded that these outlying regions were causing
the Visitmodel to be quite different from the rest. This can
also be seen in the matrix plots, by the consistently low spa-
tial correlation between Visit and most of the other mod-
els, for both variables. However, for NEE, the distribution for
Visit is identical to the distribution for the other models:
in this case the lack of correlation causes Visit to be dif-
ferent from the rest. The outlier regions, Tropical Asia
and South American Tropical, appeared to be sim-
ilar for all the models, as shown by the clustered polylines
for NPP. The scientists confirmed that this was an expected
pattern for tropical regions for NPP; such a pattern was ex-
pected to be absent for NEE, which was also confirmed by
observing the parallel coordinates plot.

By using SimilarityExplorer the climate scientists were
thus able to discover that the models had better agreement
for tropical areas where there is little seasonality in growing
conditions, like temperature. The models had lower agree-
ment for temperate and boreal ecosystems that have distinct
and more variability in growing conditions. One of our col-
laborators commented that “this would allow them to de-
velop hypotheses on performing additional experiments" and
that "the free-style nature of the exploration lends well to
shift from one variable to another and support root-cause
analysis”.

7.2. Exploring Model-Model similarity (Q1, Q3)
Gross Primary Productivity (GPP) is arguably the most im-
portant ecosystem variable, indicating the total amount of
energy that is fixed from sunlight, before respiration and de-
composition. Climate scientists need to understand patterns
of GPP in order to predict rates of carbon dioxide increases
and changes in atmospheric temperature. The motivation for
this scenario was to compare multiple models with respect
to GPP by exploring model similarity for the Europe and
Eurasia sub-regions; for the summer and winter seasons,
and compare those trends with the correlations for tropical
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Figure 7: Comparing model similarity for GPP and analyzing spatiotemporal anomalies for winter and summer (Q1,
Q3). Using the projection view, scientists were able to select similar models; using the matrix view they could compare spatial
and temporal correlation (indicated by the numbers); and identify anomalies using the small multiples view.

and temperate regions.. As shown in the summer view in
Figure 7, the model pairs of CLM-CLM4VIC and BIOME-
LPJ appear to be similar, based on their relative proximity
in the projection view. They selected these models and in-
stantiated the matrix view (Figure 7). This showed high spa-
tial correlation but low temporal correlation for the CLM-
CLM4VIC model pair for summer, as well as for winter
season. For comparing the trends with the temperate and
tropical regions, they used the small multiples view. The
notable deviations were i) SA tropical which showed
higher temporal correlation across summer and winter for
this model pair, and ii) Tropical Asia which showed
higher temporal correlation than Europe and Eurasia
sub-regions for the winter season. For the BIOME-LPJ
pair, the models appeared to be more similar during sum-
mer than winter based on the projection view. The drop in
spatial correlation during winter was confirmed by the ma-
trix views. However, the temporal correlation was higher in
winter than during summer. From the small multiples view,
the scientists found that during summer the SA Trop-
ical, Tropical Asia and SA Temperate regions
had lower spatial correlation than Europe and Eurasia
sub-regions; while Tropical Asia and SA Temper-
ate had lower temporal correlation compared to the same.
Both spatial and temporal correlation for this model pair
seemed to increase for the winter season for the SA Trop-
ical, Tropical Asia and SA temperate region.
This trend was contrary to the pattern for the Europe-
Eurasia region.

By using SimilarityExplorer the climate scientists were
able to visualize the interdependency between seasonality,
region, and model. The fact that the SimilarityExplorer made
their analysis more streamlined and efficient was validated
from one of their comments: “Without this tool scientists
would literally print hundreds of plots and pin them on the
wall, this tool solves this problem”. They also appreciated

the fact that “the tool can be easily extended for more mod-
els, the benefit is being able to do this with 20 models”.
8. Conclusion and Future Work
In this paper, we have presented SimilarityExplorer, a visual
analysis tool for comparison of multifaceted climate models.
Climate scientists are naturally more familiar and comfort-
able working in one of the two facets of space and time than
the other. Most of their exploratory thinking, tools and anal-
yses tend to be biased toward one of them, at the expense
of investigations into the other. Because of the relative ease
with which users can ‘cross the diagonal’ from one realm of
analysis to the other, the scientists found that “the Similarity-
Explorer offset such natural prejudices and facilitated com-
mensurate symmetry, resulting in more complete exploration
and understanding”. A drawback of SimilarityExplorer is
that the data pre-processing takes place externally, thereby
restricting the flexibility of the tool. We are working on in-
tegrating pre-processing capabilities and additional metrics
so that the tool is more flexible in adapting the visualization
to the analysis needs of the scientists. Our approach of pro-
viding multiple perspectives on occurrence and causality of
similarity is generalizable to other domains that involve spa-
tiotemporal data, like urban data. We are looking forward to
add more features to, and apply SimilarityExplorer for solv-
ing problems related to such different domains.
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