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Abstract—Interactive visualization requires the translation of data into a screen space of limited resolution. While currently ignored by
most visualization models, this translation entails a loss of information and the introduction of a number of artifacts that can be useful,
(e.g., aggregation, structures) or distracting (e.g., over-plotting, clutter) for the analysis. This phenomenon is observed in parallel
coordinates, where overlapping lines between adjacent axes form distinct patterns, representing the relation between variables they
connect. However, even for a small number of dimensions, the challenge is to effectively convey the relationships for all combinations
of dimensions. The size of the dataset and a large number of dimensions only add to the complexity of this problem.
To address these issues, we propose Pargnostics, parallel coordinates diagnostics, a model based on screen-space metrics that
quantify the different visual structures. Pargnostics metrics are calculated for pairs of axes and take into account the resolution of
the display as well as potential axis inversions. Metrics include the number of line crossings, crossing angles, convergence, over-
plotting, etc. To construct a visualization view, the user can pick from a ranked display showing pairs of coordinate axes and the
structures between them, or examine all possible combinations of axes at once in a matrix display. Picking the best axes layout is
an NP-complete problem in general, but we provide a way of automatically optimizing the display according to the user’s preferences
based on our metrics and model.

Index Terms—Parallel coordinates, metrics, display optimization, visualization models.

1 INTRODUCTION

In visualization pipeline models, the visual representation is usually
regarded as the end product, even though it is obviously a central part
of the process of visualization and visual analysis. A good visualiza-
tion has to provide a clear picture of the relevant structures to the user.
Optimizing a visualization cannot only take the data into account, but
has to be done differently for different visualization techniques. Struc-
tures that are clearly visible in one technique may be hard to find or
cause clutter in another.

Despite the increase in quality and resolution of computer displays,
visualization still works in a space with a limited number of discrete
pixels. This leads to over-plotting, clutter, and other artifacts. While
many of these artifacts are considered undesirable and we usually
strive to avoid them, they can also point to interesting structures in
the data, like clumping points in a scatterplot or a large number of
intersections in the center between two axes in parallel coordinates.

While we tend to think of data visualization as an almost perfectly
transparent window into the data, we believe that there is a need
to study the appearance of the visualization on a limited-resolution
screen in order to understand its own properties and how they influ-
ence the way they represent the data. Data-based metrics have been
proposed to reduce clutter, cluster data and even dimensions, but those
only indirectly address what the user sees on the screen. While the
perceptual side of visualization is also being studied, little attention is
paid to the way the visualization appears on the display. A level of in-
trospection within the visualization would make it possible to calibrate
itself based on the actual rendered image on screen.

We propose Pargnostics (Parallel coordinates diagnostics) as the
bridge between the last stages of the visualization pipeline and the
user’s perceptual system for the specific case of parallel coordinates.
By studying the visual structures that the parallel coordinates tech-
nique creates on screen, we support the process of exploration in a
way that is tailored to the technique. The structures we describe are
what we believe to be relevant for the user’s perception of the repre-
sented data, based on common tasks performed with visualizations.
We do not study the perceptual process itself.
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Once we understand the visual structures on screen, we can use
this understanding to optimize the display to support particular tasks.
Our optimization arranges the axes of a parallel coordinates display to
maximize or minimize certain patterns. This is a significant problem,
given that a dataset with d dimensions would require looking through(

d+1
2

)2
configurations to see all possible axis pairings (including in-

versions) [29]. Basing our metrics on axis pairs, we are able to provide
a very efficient optimization procedure that greatly reduces the number
of configurations that need to be analyzed.

2 RELATED WORK

While there is no complete framework of metrics to describe visual-
izations, a considerable amount of work has been done in the area.

2.1 The Case for Metrics
Several authors have argued for the need of metrics in information
visualization. Tufte [24] was among the first to propose visual qual-
ity metrics for static two-dimensional charts, but their applicability to
interactive, screen-based visualizations is limited. Miller et al. [19] ar-
gued the overall motivation for metrics and their role in predicting the
success of visualization tools being developed. A more concrete work
and similar to the approach we follow is seen in Bertini et al.’s work
on scatterplots [5], which employs a non uniform sampling technique
to reduce clutter in 2D scatterplots. They further argue for the need
of metrics [6] where they define different visual quality metrics and
provide a research direction for each. The definition of the metrics is
applicable to our work, because we conceive Pargnostics metrics as a
diagnostic model for visually effective quality and feature-preserving
visual structures.

2.2 General Screen-Space Metrics
A key aspect of Pargnostics is that it is an information-assisted vi-
sualization model [7], but based on image-space metrics rather than
information abstracted from data. Our goal is to convey the different
visual structures that encode information to the user. One of the early
instances of such work is Scagnostics (Scatterplot Diagnostics), pro-
posed by Tukey et al. [25]. This work was extended by Wilkinson et
al. with more detailed graph-theoretic measures [30] for detecting a
variety of structural anomalies in a geometric graph representation of
the scatterplot data. The resulting rating can be used to pick views that
show particular structures that are of interest to the user.

Similarly, in Pixnostics [21] the authors use image- and data-
analysis techniques in conjunction to rank the different lower-
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Fig. 1. Illustrating binning with equal-width histograms: On the left is the
binned space of the parallel coordinates and on the right is the degree
of each bin in the 2D histogram.

dimensional views of the dataset and present only the best to the user.
The method creates lower-dimensional projections that provide maxi-
mum insight into the data and optimizes the parameter space for pixel-
oriented visualizations.

In Pargnostics, we focus on parallel coordinates and, similar to
Scagnostics and Pixnostics, aim to reduce the analyst’s burden of
searching for the optimum views of the data. The over-arching goal
of Pargnostics is to play the role of a multi-dimensional detective [12],
where we diagnose structures of interest on behalf of the user. In addi-
tion, the user is aided with an interactive interface to enhance the effect
of helpful structures (e.g., convergence/divergence, parallelism) and
reduce the same for structures that hinder his analysis process (e.g.,
large number of crossings, over-plotting).

2.3 Metrics for Parallel Coordinates

There are some instances of image-space based metrics in the context
of parallel coordinates [14, 13]. Tatu et al. propose similarity-based
functions based on Hough Space transforms to find clusters [23]. They
propose dimension reordering based on analysis functions on the re-
sulting image of parallel coordinates. Johansson et al. [15] propose a
screen-space metric based on distance transforms to estimate the vi-
sual quality of the abstracted dataset. Our approach is different in the
sense that we attach semantics to the structures that can be seen on the
screen and not only define the metrics qualitatively but also quantita-
tively. Dimension reordering has also been addressed in earlier work:
Ankerst et al. [4] compute the degree of similarity among dimensions
based on data-space metrics and cluster similar dimensions together.
A somewhat similar idea is pursued by Yang et al. [31]: similar dimen-
sions are clustered and used to create a lower-dimensional projection
of the data. In Pargnostics we focus on dimension reordering as a
tool for optimization based on a new set of screen-space metrics. We
also employ optimization where the user can select views that suit his
analysis by browsing through a rank-ordered view by features.

2.4 Visual Artifacts in Parallel Coordinates

An important building block of Pargnostics is that we investigate how
the different visual artifacts in parallel coordinates like the ones de-
scribed in Section 3 either help or hinder the knowledge discovery
process. Crossing of lines is one such important artifact: too few
crossings imply lack of correlation and too many can cause clutter.
Zhou et al. [32] propose using curved edges instead of straight lines
for connections among points between axes, which increases the trace-
ability of lines and thus reduces edge clutter. Ellis and Dix [9] use line
crossings and crossing angles to reduce clutter and the number of lines
within a user-controlled lens. We do not measure clutter explicitly,
but compute the causal factors like line crossings and angles of cross-
ing. Our approach also considers more uses of these metrics than just
determining occlusion and clutter.

Fig. 2. Scatterplot features mapped to parallel coordinates: The right
axis of each axis-pair corresponds to the X-axis of the scatterplot and is
labelled accordingly.

3 METRICS

Pargnostics metrics are intended to be the bridge between the visual
representation and the analytical tasks of the user. The choice of met-
rics depends upon the analytic tasks that a user would perform with the
tool. Finding correlation and clusters in the data are typically consid-
ered to be among the ten most important low-level analytical tasks in
information visualization [2]. Parallel coordinates, in particular, sup-
ports tasks like examining properties and relationships between vari-
ables represented by axes [3]. We designed our metrics with the goal
of establishing the missing link between the geometrical features and
these analysis tasks: line crossings, parallelism, mutual information
(correlation); angles of crossing, convergence-divergence (clusters);
over-plotting, and pixel-based entropy (image quality).

Since we are working in a limited screen-space, all the metrics have
to be optimized to operate efficiently in real-time. Therefore we pro-
vide an optimization framework based on user-preferred settings. We
are also cognizant of the visual information seeking mantra [22]. We
provide multiple views of the data: the ranked view shown in Fig-
ure 10 and the matrix view give an overview of the structures in the
parallel coordinates visualization. This is especially useful when the
user is totally unfamiliar with the data, or wants to take a fresh look at
known data. The main view can then be used to filter and optimize the
data, as well as getting details on demand.

Among the metrics, we find the number of line crossings and paral-
lelism metrics to be the most useful for optimization, because they help
reduce clutter and maximize the visibility of correlations. Angles of
crossing are also helpful for avoiding highly-correlated combinations
where line crossings get difficult to read. The convergence-divergence
metric helps isolate categorical or quasi-categorical axes (numerical
but with only few values); the pixel-based entropy allows us to opti-
mize the alpha value when rendering larger datasets that lead to clutter.

3.1 Model

Our metrics are based on a particular view of parallel coordinates that
differs from that of most existing work. This model informs the design
of the metrics and also has consequences for the optimization proce-
dure described later in this paper.

Pargnostics are a set of screen-space metrics for parallel coordi-
nates. As such, they inherently depend on the size of the display, mea-
sured as the number of pixels. This discussion is based on the common
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Fig. 3. The possible configurations of two lines in parallel coordinates, classified using Allen’s interval algebra. Before/after and meets relations
are not shown, because they trivially mean no intersection. See Table 1 for a classifications of crossings using these criteria.

parallel coordinates layout, which draws vertical axes and lays the axes
out horizontally from left to right.

We consider a parallel coordinates display to consist of a series of
axis pairs, similar to scatterplots in a scatterplot matrix (Figure 2). The
space between a pair of axes is where interesting patterns such as par-
allel or crossing lines, aggregations of lines, etc., can be observed. As
pointed out by Li et al. [17] finding correlation in parallel coordinates
ultimately boils down to finding those patterns between pairs of axes.
This is also true for all relevant structures that the user is looking for
in the data. Neighboring axis pairs of course depend on each other
because the left or right axis has to correspond to the right or left axis
of the neighboring pair, respectively.

Axis inversions are considered within each axis pair, and are inde-
pendent of each other. Our model is only concerned with the relative
direction of axes within the pair, not with their absolute direction as
they appear on screen. This enables us to considerably simplify and
speed up the optimization process (Section 4). Local axis pair inver-
sions are propagated through the list of dimensions when the result of
the optimization is to be shown on screen.

3.2 Pixel-Space Histograms
The basis for most metrics is pixel-based binning (Figure 1). With
each axis being h pixels high, we define three types of his-
tograms: one-dimensional axis histograms, one-dimensional distance
histograms, and two-dimensional axis pair histograms.

All binning is done in screen space, after the values have been trans-
formed into pixel coordinates. The data values, vi, are projected onto
screen pixel coordinates, li (for the left axis in a pair) or ri (for the
right axis), by a mapping function f : (li,ri) = f (vi). We disregard any
padding around the axes, so 0≤ li < h.

One-Dimensional Axis Histogram. The basic one-dimensional axis

histogram has h bins, and consists of bins bi that count the number of
lines starting or ending in them. In the following formula, i is in the
range [0;h−1].

bi = |{k | blkc= i}|

One-Dimensional Distance Histogram The one-dimensional dis-
tance histogram records the slope of the lines between the axes, mea-
sured as the vertical distance in pixels. This measure can be used to
calculate the actual angle when the spacing between the axes is given.
The steepest line going up or down covers the entire height of the dis-
play, and can thus have a vertical distance in the range (−h;h). This
leads to a total of 2h−1 bins, as the up and down ranges overlap at the
value 0. This histogram is used for calculating the parallelism metric.

di = |{k | brk− lkc= i}|

Two-Dimensional Axis Pair Histogram. Looking further at the space
between the axes, we define a histogram of all the lines, covering both
axes. This is a two-dimensional histogram, consisting of bins bi j, with
both i and j in the range [0;h−1].

bi j = |{k | blkc= i∧brkc= j}|

This is the basis for the calculation of the number of line crossings
(Section 3.3), crossing angles (Section 3.4), convergence/divergence
(Section 3.7), as well as over-plotting (Section 3.8).

3.3 Number of Line Crossings
A prominent feature of parallel coordinates are crossing lines between
pairs of axes. Many crossing lines typically mean some kind of in-
verse relationship, especially if the crossings occur mostly around the
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Fig. 4. Using the interval classification, we can simplify the structure by using Rit’s sets of possible occurrences [20]. The different lines in parallel
coordinates are shown in the scatterplot/SOPO diagram on the right. The thick reference line a is used as the reference on the right. All intervals
that fall into the shaded areas represent lines that cross the reference line, those lines are drawn as solid lines; dotted lines do not cross the
reference line.

center. Line crossings also contribute to clutter and can make it diffi-
cult to identify which lines are going where. The importance of line
properties in implying correlations have been studied [18, 29]; Ellis
and Dix [9] also dealt with line intersections as a cause for display
clutter. Also, user studies [17] show that judging correlations can be
a complicated task because of several artifacts in parallel coordinates.
Since line crossings directly affect correlations, especially inverse cor-
relations, it is important the user is able to maximize or minimize it for
optimization.

To efficiently calculate the number of crossings, we interpret each
line between a pair of axes as a directed interval. Allen’s interval al-
gebra for temporal reasoning [1] enumerates all possible relationships
between pairs of time intervals: A before B, A meets B, A overlaps B,
A starts B, A finishes B, and A equals B. All relationships except
equals can also be applied as B R A, leading to a total of 13 different
ones.

For the purpose of determining line crossings, we add the direc-
tion of the line or interval as a second attribute (Figure 3). We are
not interested in the absolute direction, but only whether the two lines
are pointing in the same or opposite directions. Disregarding the be-
fore/after and meets relations, which trivially cannot lead to intersec-
tions, we can classify which relationships and directions lead to inter-
secting lines and which do not (Table 1).

This classification can be simplified by making use of work by Rit,
who devised a way to graphically propagate temporal constraints [20].
Similar to the point-line duality between scatterplots and parallel co-
ordinates, sets of possible occurrences (SOPOs) depict intervals as
points on a two-dimensional diagram with two time axes: one for the
start and one for the end of the interval. Combining all the areas that
correspond to the line crossing conditions, we find a simple rule for
determining whether two lines cross (Figure 4).

Given the two-dimensional histogram, we can calculate the number
of line crossings, L:

L =
h−1

∑
i=0

h−1

∑
j=0

h−1

∑
k=i+1

h−1

∑
l= j+1

bi jbkl

This leads to a complexity of O(h4), though in practice it is much

lower: if bi j is zero, the program does not need to enter the two inner-
most loops. In real-world data sets, the histogram is very sparse, so
this condition has a large effect on algorithm runtime.

An alternative way to calculate L is by comparing lines directly,
using the condition derived from the discussion above.

L =
n−1

∑
i=0

n−1

∑
j=0

{
1 ri < li∧ r j < l j ∨ ri > li∧ r j > l j
0 otherwise

The complexity of the latter is O(n2), though since usually h << n,
the two methods perform equally well for many real-world data sets.

L is bounded by the number of possible line crossings in a given
data set of size n. Since each line can intersect with every other line,
but only once, the upper bound is n(n−1)

2 . The normalized number of
crossings, Lnorm, therefore is:

Lnorm =
2L

n(n−1)

3.4 Angles of Crossing
While the number of line crossings can be an issue, an equally im-
portant one involves the angles at which lines cross. Lines crossing
at flat angles are harder to follow than ones crossing at close to right
angles [11, 28]. Lines that are part of clusters also tend to cross at low
angles [29].

We calculate the crossing angles between pairs of lines. Except for
parallel lines, any two lines will have two crossing angles that add
up to 180◦. Since we care about how close to a right angle the lines
cross, we choose the smaller one of the two. The angle calculation is
only performed for lines that are known to cross based on the crossing
lines conditions above. They are then rounded and binned into whole
degree bins, and we calculate the median crossing angle. The resulting
histogram (Figure 5) is used for display purposes, while the median is
used as the criterion for optimization.

The calculation is based on the two-dimensional axis histogram.
For each pair of bins that are found to contain crossing lines, we cal-
culate the crossing angle. This means that for multiple lines crossing



Table 1. Conditions for intersection based on interval relation and direc-
tion, grouped and ignoring symmetrical cases (see Figures 3 and 4).

Relation Direction Intersection

same no
before/after

opposite no

same no
meets

opposite no

same no
overlaps

opposite yes

same yes
during

opposite yes

same no
starts/finishes

opposite yes

same no
equals

opposite yes

at the same point, we only have to perform the calculation once, and
can add bi jbkl to the histogram (similar to the way it is done for the
number of crossings above).

3.5 Parallelism
In addition to line crossings, there are also structures where lines are
parallel or close to parallel to each other. Such lines can mean corre-
lations between two dimensions [3]. Li et al. described the difficul-
ties user have judging correlations in a parallel coordinates environ-
ment [17]. Parallelism can also imply closely aggregated lines or clus-
ters within a subset of the data. When given the choice between line
crossings and parallel lines, the latter are often preferable to crossings
because they lead to less clutter. This is of importance for the display
optimization described below.

To describe parallelism, we compute a vertical distance histogram
between any two connecting points on adjacent axes (Figure 5). Posi-
tive values in this histogram mean lines going up, negative values indi-
cate lines pointing down. Axis pairs with a high degree of parallelism
tend to have narrow distributions of directions, while ones with no or
very little apparent parallelism cover the entire distance spectrum with
no apparent clustering of values.

Parallelism is defined both in terms of direction and extent. The
median distance value indicates the direction and the extent of paral-
lelism is given by the interquartile range: a narrow interquartile range
implies high parallelism. We normalize the distances between 0 and
1, by dividing by the highest possible distance. We then compute par-
allelism Pnorm as follows based on the interquartile range between the
25% and the 75% quartiles, q25 and q75 .

Pnorm = 1−|q75−q25|

The subtraction is done to get a higher parallelism value for a higher
degree of parallelism (and thus a smaller interquartile range). The
direction is given by the median MP, which is not normalized (the
direction only makes sense in pixel coordinates):

MP = q50

3.6 Mutual Information
In exploratory data analysis, the information the user is looking for
is subjective: task oriented and difficult to model. Mutual informa-
tion [8] provides a general measure of dependency between variables;

Fig. 5. Distance histograms (left half of each cell below the parallel
coordinates) and angles of crossings (right half) histograms for different
dimensions of the cars data.

its value is zero when they are conditionally independent. Pearson cor-
relation coefficient is extensively used for this purpose, but a lack of
such correlation does not imply that two variables are independent. In
Pargnostics, we treat the data dimensions as random variables, and our
computation is based on the binned space. The probability that a di-
mension assumes a particular data value is therefore equivalent to the
binned value in the screen space.

Let X and and Y be random variables. Mutual information I(X ;Y )
is defined in terms of probability distributions as:

I(X ;Y ) =
h

∑
i=1

h

∑
j=1

p(xi,y j) log
p(xi,y j)

p(xi)p(y j)

In this case pi= bi
h , using the one-dimensional axis histogram, where

p(xi,y j) denotes the joint probability of random variables X and Y and

in this case p(xi,y j)=
bi j
h using the two-dimensional axis histogram

(Section 3.2).
Some of the dimensions which exhibit high mutual information

(Figure 10) in the cars data are MPG and weight, weight and accelera-
tion, horsepower and weight, etc. This is expected as we know lighter
cars have good fuel economy and better acceleration. Thus mutual in-
formation provides an indication to the user, which axis pairs are likely
to convey interesting information.

3.7 Convergence, Divergence
A common pattern in parallel coordinates is comprised of few values
on one axis that branch out to many values on the other. Similar to
clumpiness in Scagnostics there can be many lines converging to a
point or diverging from a point between adjacent axes. They represent
sine functions with multiple periods [10]. These structures are a useful
characterization of the data points as they reveal associative relation-
ships: many-to-one or one-to-many relationships between points on
adjacent axes.

Convergence. Convergent structures between a pair of axes com-
prise of those lines on the left axis which converge to a single bin on
the right axis. Mathematically, the total convergence C between two
axes can be calculated as:

C =
h

∑
i=1

h

∑
j=1

{
1 if b ji > 0
0 otherwise

Divergence is the mirror image of convergence and is given by
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Fig. 6. Axis inversions are handled locally during the optimization, and only considered per axis pair. They are later propagated through all
dimensions from left to right to determine which axes end up being inverted.

D =
h

∑
i=1

h

∑
j=1

{
1 if bi j > 0
0 otherwise

The ratios Cavg = C
n and Davg = D

n where n is the total number of
lines between two axes, indicate the average degree of convergence or
divergence between each axis. To give an overview of the degree of
convergence/divergence present between each pair of dimensions, we
show histogram of convergence or divergence, whichever is greater.
The values are normalized as follows:

Cnorm =
C

max(bi j)

Dnorm =
D

max(bi j)

3.8 Over-plotting

Over-plotting is a measure of the quality of a visualization. This is
especially relevant in the case of parallel coordinates. Here, due to
the large dataset sizes and a limited number of screen pixels, several
data points can be mapped to the same pixel value on two adjacent di-
mensions. The degree of over-plotting helps to estimate the informa-
tion density between adjacent dimensions. High over-plotting leads to
dense cloud of lines and the user might often be interested in a view
that minimizes it. Quantitatively, over-plotting is a side effect of bin-
ning and is therefore an indication of the information loss that occurs
during processing. Having different bin size would directly affect over
plotting and help us achieve controlled information loss. The degree
of over-plotting O is computed from the count of each bin of a two-
dimensional histogram. Each count in a bin greater than 1 contributes
to over-plotting.

O =
h

∑
i=1

h

∑
j=1

{
bi j if bi j > 1
0 otherwise

The total degree is then normalized by the number of data points n
to give the normalized degree of over-plotting:

Onorm =
2O

n(n−1)
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Fig. 7. Entropy for the wine dataset, measured for different α values
from 0.1 to 1.0, in steps of 0.05. The maximum at 0.25 yields the most
visual information; less is too faint, more leads to clutter.

3.9 Pixel-based Entropy
Entropy measures the degree of randomness in a process, and thus
the amount of uncertainty present at any segment of a visualization
display. In case of parallel coordinates, we compute the entropy for
the region between a pair of axes: regions of high entropy imply high
information density [21, 27]. Entropy is computed from a rendered
parallel coordinates image, using the gray levels as the alphabet that is
being transmitted. We first aggregate the values into a histogram with
256 bins, xi. The probability of encountering a particular gray value,
given the total number of pixels npixels between the axes, is

pi =
xi

npixels

Using this definition, we calculate the entropy based on the usual
definition:

H =−
255

∑
i=0

pi log pi

For greater numerical stability (because the pi tend to be very
small), we use npixels

xi
in the actual calculation, which modifies the for-

mula into



Fig. 8. Parallel coordinates matrix of the cars dataset, showing axes
pointing in the same directions in the lower left, and inverted axis in the
upper right half.

H =
255

∑
i=0

pi log
1
pi

=
255

∑
i=0

xi

npixels
log

npixels

xi

In parallel coordinates, a high entropy indicates a region with a large
number of line crossings, but no inverse structure – an inverse relation-
ship leads to a large amount of white pixels at the top and bottom of
the region, which greatly reduces the entropy. While there is no sim-
ple connection between entropy and display structures, maximizing
entropy generally yields busy but very readable displays of the data.
Entropy computed across the entire display also allows us to use semi-
transparent rendering similar to density plots for very dense data, and
to optimize the α value used (Figure 7).

4 DIMENSION ORDER OPTIMIZATION

Using the above metrics, we are able to optimize the display for the
analyst. In general, finding an optimal ordering of axes for parallel
coordinates is equivalent to the traveling salesman problem, and thus
NP-complete [16]. Using a branch-and-bound algorithm and consid-
ering the special properties of parallel coordinates, we are able to find
optimal solutions in much less time in general. Our binned data model
of parallel coordinates also reduces many the computations (reducing
the impact of the number of data items) and even handles axis inver-
sions as local decisions, leading to a very efficient solution.

We use a branch-and-bound algorithm to find the optimal order of
axes. We first build a matrix of all axis pairs and the cost associated
with them. The cost can be a combination of several metrics, using
weights selected by the user. This computation is only performed
once, and is the only step that depends on the number of records in
the dataset. All subsequent steps are performed on the basis of this
matrix and thus only depend on the number of dimensions.

4.1 Axis Inversions
Axis inversions are handled per axis pair as part of building the cost
matrix. For each axis pair, the cost for both the inverted and the non-
inverted situation are computed across all the desired metrics. The
lower value is used in the matrix, and the program records which of
the two values that was.

Fig. 9. Histogram matrix for the cars dataset. The left histogram in each
cell shows the distance, the right one line crossing angles.

Axis inversions can be handled locally because we consider them
only between the two axes in each axis pair. Inverting one axis pair
does not have an immediate effect on neighboring axis pairs. Only
once the optimal solution has been found, the inversions are propa-
gated across the axes from left to right (Figure 6). Since users more
likely prefer axes pointing up, the program also performs a global in-
version that flips all axes if the majority of them are pointing down
after the propagation.

While axis inversions can dramatically reduce the number of cross-
ings and increase parallelism, they also make reading the visualization
more difficult, because they require the analyst to look up the axis ori-
entations and remember which ones are inverted and which are not.
The optimization therefore provides the option not to use inversions in
the process.

4.2 Branch-and-Bound Optimization
We implemented the optimization as a branch-and-bound algorithm
that uses a priority queue and best-first search. A key issue in branch-
and-bound implementations is how tight the bounds can be estimated
when the decision is made about whether to cull a sub-tree or not. In
our case, these estimates are based on a full cost matrix, and are very
precise.

Based on our case studies, we find that the best-first search very
quickly finds the optimal solution after only a few complete solutions
(i.e., having walked through to a leaf of the search tree). This is not
surprising given the reduction of the metrics to axis pairs, rather than
looking at the entire visualization at once. In most cases, the opti-
mization ends up only picking the best next axis from the ones still
available, rather than having to evaluate a much larger number of per-
mutations.

5 PERFORMANCE

For practical use, metrics need to be calculated in reasonable time.
The fact that all Pargnostics metrics are based on histograms simpli-
fies computation, and reduces the real-world complexity by reusing
intermediary results.

All histograms are created in one pass, with complexity of O(n) (n
being the size of the dataset). In our implementation, the one- and two-
dimensional histograms are computed at the same time, which further



Fig. 10. Parallel coordinate views of the cars dataset, ranked by different metrics. The left view shows ascending order, the right one descending
order. In our implementation, the user is shown the names of the axis when mousing over a plot, and the display also highlights all instances of the
same plot the user is pointing at.

reduces overhead. The calculation of line crossings (and crossings
angles) is the most computationally expensive, with a complexity of
O(h4) or O(n2) (where h is the size of the display, see Section 3.2).
All others are O(h2) or O(h), with h << n (i.e., O(n) would in many
cases be more expensive in real-world terms).

The optimization requires the calculation of the relevant metrics
(which the user picks) for all axis pairs. They are used to build a
cost matrix, which the branch-and-bound optimizer needs for building
candidate solutions. Once the matrix is built, the optimization is very
efficient. For a dataset with 12 dimensions, it typically queues several
ten thousand partial solutions, but only evaluates a few (less than ten)
complete ones. That means that our culling criterion is very good, and
that the best-first search has a high chance of immediately finding the
best overall solution.

Multiple metrics are handled in the matrix building stage, and have
no direct bearing on the performance of the optimization itself. Having
to evaluate several metrics of course slows down the matrix construc-
tion. Axis inversions similarly are handled at the first stage and do not
increase the complexity of the search space. Since our implementation
efficiently computes the inverted value together with the non-inverted
value for most metrics, the added cost for considering inversions is
very low.

6 DISCUSSION

While Scagnostics are based on a projected data space, the source data
for Pargnostics is a sampled, binned space that corresponds directly
to the pixels on the screen. This makes Pargnostics inherently scale-
dependent, and thus mirror what the user actually sees when working
with an interactive visualization. Like Scagnostics metrics, our pro-
posed metrics are not orthogonal to each other, but have dependencies
between them. In parallel coordinates, axis inversions have a direct
impact on the structures one sees on the screen. Although this adds to
the complexity of the search process for the end user, he has more ways
to search the visual space for useful structures. Some of the structures
which may not be obvious in non-inverted axes may become obvious
due to inversion of the axes.

The structures we quantify can be described in terms of more than
one metric taken together. The quality of the rendered image can
be described both in terms of over-plotting and pixel-based entropy.
Clutter can be quantified in terms of a high number of crossings and
low crossing angles; high parallelism and low crossing angles tend to

produce clusters; low crossings usually lead to high parallelism, but
may also be manifested in converging/diverging structures with lines
clustered close to each other. Correlation between dimensions can be
quantified in terms of parallelism and mutual information. Since com-
bining metrics can reveal interesting structures, we allow the user to
combine multiple metrics in the optimization.

One limitation of our approach is that it we have cannot be sure that
our set of metrics is exhaustive, and can only test their effectiveness
in case and user studies. The metrics also require knowledge of the
user’s screen and display size, and need to be recalculated when the
display is resized.

7 CASE STUDY

We demonstrate the use of our metrics with two example datasets, one
describing car models and another one about wines.

7.1 Cars Dataset

The cars dataset [26] consists of 392 values and six attributes: MPG,
horsepower, cylinders, weight, acceleration, and year. Pargnostics
metrics can be used for both user-centered and automated optimiza-
tion. Based on the common scatterplot matrix, we have developed a
parallel coordinates matrix view that shows all combinations of axes
in the lower left half of the matrix with both axes pointing in the same
direction, and with inverted axes in the upper right (Figure 8). A simi-
lar matrix view shows the distance and angle histograms for each axis
pair (Figure 9).

The small parallel coordinate plots show the overall structure of
the axes pairs, while the histograms give some insight into some of
the metrics. In our prototype implementation, the user can construct
the parallel coordinates display by picking axis pairs from any of the
matrices. There is also a ranked view of parallel coordinate axis pairs
(Figure 10), which allows the user to directly find parts of the display
that exhibit certain structures.

Selecting from any of those views is based on visual structure rather
than particular data dimensions, and thus frees the user from precon-
ceived ideas about the data. Adding dimensions is typically done by
selecting them by name; in our model, the display can be built directly
from interesting visual structures. The resulting display makes maxi-
mum use of the power of the visualization.



(a) View with maximized angles of crossing, including axis inversions (last
three axes).

(b) Minimizing the number of crossings.

(c) Minimized angles of crossing and maximum parallelism.

(d) Maximized number of crossings and minimized angles of crossing, and in-
cluding inversions.

Fig. 11. Optimization for different sets of criteria using the wine dataset.

Fig. 12. Initial layout of the wine dataset.

7.2 Wine Dataset

The wine quality dataset [26] consists of 4898 rows and 12 dimen-
sions: fixed acidity, volatile acidity, citric acid, residual sugar, chlo-
rides, free sulfur dioxide, total sulfur dioxide, density pH, sulphates,
alcohol, and quality. Figure 12 shows the initial view of the data set,
with the dimensions in the order in which they appear in the data file.

7.2.1 Single-Metric Optimization

In Figure 11(a), parallel coordinates is optimized by high crossing an-
gles, taking inversions into account. As we can see, most of the lines
between the axes tend to cross at close to 90 degrees and this helps
to reduce clutter. In Figure 11(b), parallel coordinates is optimized by
minimum number of crossings. This tends to produce a less cluttered
display, but at the same time produces high parallelism as observed on
density and all dimensions to the right of it.

7.2.2 Multi-Metric Optimization

In Figure 11(c), parallel coordinates is optimized by low crossing an-
gles and high parallelism. This configuration produces clusters on ei-
ther side of the categorical quality variable. Thus this configuration is
not only useful to see the correlations and clusters, but also enables one
to see where the intense concentration of records, or the mode [29], oc-
curs. In Figure 11(d), parallel coordinates is optimized for high num-
ber of crossings and low crossing angles, taking axis inversions into
account. There are many inverse correlations observed between most
of the axes. A large number of crossings generally tends to produce
inverse correlated structures and with low angles, the clusters can be
seen clearly.

8 CONCLUSIONS AND FUTURE WORK

Pargnostics metrics provide a new way of looking at parallel coordi-
nates. We argue that defining parallel coordinates in terms of small
multiples, i.e., axis pairs, enables us to optimize the display in an ef-
ficient manner. Screen-space metrics not only describe the rendered
image on screen, but also quantify the different visual structures one
can see. In this sense, Pargnostics fills a gap in the existing litera-
ture on parallel coordinates. Being able to analyze what ends up on
the screen makes it possible to provide better visualization setups that
take the specific properties of the visualization technique into account.

We are expanding this work to cover more visualization techniques,
and adding additional metrics as needed. Some of the current met-
rics also apply to other techniques, but additional ones are certainly
necessary. We are also working on devising user studies to test the
effectiveness of our metrics, and to see how well users will be able to
handle them directly.

In addition to the optimization work shown in this paper, we want
to use our metrics to better understand the loss of information when
visualizing it, which is a useful property of visualizations when the
data cannot be shown at full resolution for privacy reasons.
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