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Separating the Wheat from the Chaff : Comparative Visual Cues
for Transparent Diagnostics of Competing Models

Aritra Dasgupta, Hong Wang, Nancy O’Brien, and Susannah Burrows

Abstract—Experts in data and physical sciences have to regularly grapple with the problem of competing models. Be it analytical
or physics-based models, a cross-cutting challenge for experts is to reliably diagnose which model outcomes appropriately predict
or simulate real-world phenomena. Expert judgment involves reconciling information across many, and often, conflicting criteria
that describe the quality of model outcomes. In this paper, through a design study with climate scientists, we develop a deeper
understanding of the problem and solution space of model diagnostics, resulting in the following contributions: i) a problem and task
characterization using which we map experts’ model diagnostics goals to multi-way visual comparison tasks, ii) a design space of
comparative visual cues for letting experts quickly understand the degree of disagreement among competing models and gauge the
degree of stability of model outputs with respect to alternative criteria, and iii) design and evaluation of MyriadCues, an interactive
visualization interface for exploring alternative hypotheses and insights about good and bad models by leveraging comparative visual
cues. We present case studies and subjective feedback by experts, which validate how MyriadCues enables more transparent model
diagnostic mechanisms, as compared to the state of the art.

Index Terms—Visual comparison, Visual cues, Model evaluation, Transparency, Simulation

1 INTRODUCTION

Distinguishing between the best and the worst, among a set of compet-
ing alternatives, is a pervasive analytical problem. A common instance
of this problem is when domain experts want to diagnose which models,
among a set of competing alternatives, most appropriately simulate
or predict real-world phenomena. This requires significant time and
human effort, whereby experts combine their domain knowledge with
a data-driven understanding of the trade-offs and nuances involving
multiple models. Complexity in such diagnostic evaluation process
stems from experts’ need to reconcile many outputs, from multiple
models, and many ways to evaluate the quality of competing outputs,
for ultimately selecting good models.

Depending on the goal for model selection, experts have to con-
sider a suite of domain-specific criteria. These include criteria based
on transparency and interpretability for predictive modeling [7, 26] or
statistical fidelity criteria based on output-observation matches for sim-
ulation modeling [8], which is the focus of this paper. A cross-cutting,
domain-agnostic challenge in these modeling scenarios is to develop
reliable analytical solutions that experts can adopt for overcoming the
inherent complexity of model diagnostics process.

To address this challenge, through a collaboration with climate
scientists, we study how visualization can be used for ensuring reliable
post-hoc diagnostics of climate models. Understanding differences
among many climate model outputs is a challenging task. This is usually
done (Figure 1) by comparing the simulation outputs to observation
data captured from satellites, ground-based sensors, etc. For example,
let us say that a climate model simulates cloud cover over a region.
This simulated output is compared with the observed cloud cover over
a region. The degree to which the simulated and observed output match
constitutes the fidelity of a model. Fidelity is usually quantified using
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Fig. 1. A conceptual sketch of post-hoc model diagnostics. Scien-
tists need to diagnose which models have high or low fidelity. Fidelity
is defined by statistical metrics that score model outputs based on how
closely they match observation data.

a suite of metrics, such as correlation or root-mean-squared distance
between simulated and observed outputs.

In many real-world applications (e.g., perturbed physics or perturbed
initial condition ensembles), scientists compare hundreds of simulation
models, tens of model outputs (e.g., cloud cover, temperature, aerosol
content, etc.), and many different metrics that quantify the fidelity of a
model. Because of the complexity of this task, scientists typically spend
weeks or months carefully, and often, manually, verifying multiple as-
pects of each model output. Adoption of more automated approaches
to model evaluation has been hindered in part by two key challenges in
determining appropriate overall metrics for systematic model evalua-
tion, as reflected in our previous survey of scientists’ model diagnostics
practices [5]. This survey demonstrated a lack of consensus within the
scientific community about the relative importance of the factors (i.e.
outputs, metrics) contributing to the overall fidelity of a model. Addi-
tionally, through scientists’ subjective comments in the survey, it was
recorded that current analytical tools do not provide the flexibility to
explicitly capture scientists’ assumptions, and to understand how robust
their overall evaluation of models is to those assumptions.

To alleviate these problems, we contribute a design study through
which we demonstrate model diagnostics processes can be made more
reliable using multi-way visual comparison techniques. At the core
of our solution, are comparative visual cues, which facilitate pre-
attentive search for model disagreement patterns thereby reducing the
complexity of visual search across many combinations of models, out-
puts and metrics. This in turn, drastically increases the return on
investment of scientists’ time and effort for selecting the best models.
We have three main contributions as part of this design study. First,
we provide a characterization of the model diagnostics problem and
identify a set of multi-way visual comparison tasks. Second, we derive
a design space of task-driven comparative visual cues using a classifi-



1077-2626 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2019.2934540, IEEE
Transactions on Visualization and Computer Graphics

many~(15-20) 
metrics

many~(15-20)
outputs

0

1

correlation

many (~100)
models 

Single model 
fidelity analysis

Multi-model 
fidelity comparison

Multi-model, multi-criteria 
fidelity comparison

cloud cover
relative humidity
precipitation

outputs models

Which outputs  
agree the most  

with observation?

How much do  
models uq1 and  
uq2 disagree?

How much do models  
uq1 and uq2 disagree 
across the two metrics?

metrics
uq1
uq2

Need for multi-way  
comparison among 

correlation
Bayes factor

Simulation Calibration 
& Tuning

how accurate/similar/different are the models?
what are the optimal parameters?

Global annual cost
$31.2 million

G1:
G2:

Significantly speed up model calibration. 
Make model predictions more reliable.

Modeling
Workflow

Global annual effort
104 FTEs/year

about 25 scientists/engineers  
tuning a single model for a year

avg

0

1

correlation

avg

avg

0

1

correlation

avg

avg

0.1

0.8

Bayes factor

avg

avg

cba

Fig. 2. Understanding the complexity of multi-way comparisons.
The vertical axes in a,b, and c, represent fidelity scores for different
model outputs, such as cloud cover, relative humidity, and precipitation.
Scientists need to reconcile information from hundreds of comparisons
among many models, outputs, and fidelity metrics, for judging the consis-
tency and robustness of model fidelity levels.

cation scheme. Third, we contribute MyriadCues, a tool for providing
climate scientists with an interactive mechanism to build alternative
hypotheses about the factors affecting model fidelity levels and make
reliable judgments about good and bad models. We provide a detailed
case study to demonstrate how the tool helped climate scientists gain
insights about the consistency (i.e. the degree to which models agree
about an output) and robustness (i.e. the degree to which fidelity levels
change under different conditions) of model outputs and outline the
lessons learned from expert feedback about the efficacy of MyriadCues.

2 MULTI-CRITERIA MODEL FIDELITY ANALYSIS

Climate models are complex computer simulations of the physical,
chemical, and biological processes shaping our environment [35]. Mod-
els differ in the algorithms and codes that are used, as well as in their
parameter configurations and boundary conditions. At climate model-
ing centers worldwide, development efforts that lead to a new model
version are followed by a post-hoc, time-intensive model calibration
effort, whereby experts examine statistical model fidelity metrics and
other diagnostics to determine which configurations produce credible
realizations of different climate phenomena [16]. Statistical fidelity
metrics for climate models [9] measure the degree to which model
outputs match observation (Figure 1). The greater the fidelity of a
model, the closer its agreement with observations of present-day and
historical climate phenomena.

Besides the choice of fidelity metrics, expert judgment is required
to decide which outputs to include in the fidelity calculations, and how
much weight should be assigned to each of them. This is, therefore,
a multi-criteria fidelity analysis problem, where the overall fidelity of
a model is given by the weighted average of the fidelity scores for
each output, for a given metric. In a simplified example, as shown in
Figure 2a, the overall fidelity of the model is quantified as the weighted
average of the correlation metric for three outputs: cloud cover, relative
humidity and precipitation.

Figure 2 demonstrates the complexity of the multi-criteria fidelity
analysis problem from left to right. The tasks are simpler when eval-
uating a single model, {uq1}, using a single metric, such as correla-
tion (Figure 2a.). The model has high overall fidelity with the exception
of the precipitation output. When multiple models, {uq1} and {uq2}
are compared, ((Figure 2b.) we can observe that {uq2} has higher
average fidelity, while there are disagreements about the precipitation
output between the two models, with respect to the correlation metric.
When multiple metrics are compared next (Figure 2a.), we can observe
that the Bayes factor metric is more consistent with regards to the
precipitation output from both the models. However, with respect to
the average, and other outputs, uq1 still has higher fidelity than uq2.
In this case, experts, might decide to put less weight on the precipita-
tion output due to the recorded difficulty in simulating precipitation
precisely [43]. This will lead them to reliably judge, with respect to

both metrics, that {uq1} is a better model than {q2}. This example
illustrates a simplistic scenario of comparison among two models, three
outputs, and two metrics. In reality, scientists often grapple with a much
larger and complex comparison space, with hundreds of simulations,
tens of outputs and metrics. This necessitates an analytical solution that
will enable them to efficiently perform multi-way comparison tasks.

Multi-criteria fidelity analysis can be theoretically framed as a multi-
criteria decision analysis problem (MCDA) [12, 23], where a human
decision needs to be informed by many alternatives and many crite-
ria. However, in practice, it is difficult to apply automated models
of MCDA, which require specification of trade-offs among criteria
as inputs. These relative trade-offs are not necessarily known a prior,
and discovering how best to balance different criteria when comparing
models is an open problem. Here we provide tools to support a more ef-
ficient process for comparing multiple models on multiple criteria, and
improve transparency for scientists seeking to understand the impact of
the trade-offs they make between criteria when selecting models.

3 RELATED WORK

Our contributions span two areas of research: i) the design space of
visual comparison and ii) visualization-driven model evaluation.

3.1 Design Space of Visual Comparison

Comparative analysis is an integral part of quantitative reasoning [45].
However, in most existing task classification schemes, comparison
tasks have been treated as a monolith, with the exception of the recent
work by Gleicher [10], where a set of challenges and considerations
are presented for reasoning about comparative visualization techniques.
Gleicher observed that the comparison methods described in most exist-
ing visualization systems focus on pairwise comparison or comparison
among very few objects [15, 22, 30, 32]. Recent studies on design
implications for visual comparison tasks [42] focus on simple, retrieval-
based comparisons among a few categories. In contrast, we focus on
the scale and complexity challenges of visual comparisons. We extend
the classification scheme proposed by Gleicher [10] and the previously
proposed space of encodings based on superposition, juxtaposition, and
explicit encoding [11], for reasoning about the visualization design
space of multi-way visual comparison tasks.

Multi-way comparisons are challenging because of both the
scale (i.e., the number of distinct objects, which are models, met-
rics, and outputs) and complexity (i.e., the size of the objects, which is
given by the number of models, metrics, and outputs) of the tasks. For
making the comparison tasks efficient, we use comparative visual cues
that are systematically derived based on perceptual principles [19, 41]
and that guide experts’ attention to salient fidelity patterns of interest.

Comparison mechanisms have been previously used for evaluating
topic models [1]. The Buddy plots technique scales to hundred of topics
but only supports pairwise comparison between models. In our design
space, we consider more complex comparisons, for multi-criteria fi-
delity analysis, among a combination of many models, many output
variables and metrics. We propose and leverage a classification scheme
for overcoming the scalability and complexity challenges [10, 46] as-
sociated with those tasks, based on a small multiple [45] based design.
We realize the design space in MyriadCues, an interactive visualization
interface for multi-criteria model fidelity analysis. A key functional-
ity of MyriadCues is to provide visual guidance on key changes to
model fidelity levels and the disagreement among metrics in response
to expert assigned weights to outputs. Had there been a consensus in
the climate science community about the different trade-offs involv-
ing the contribution of outputs to fidelity levels, we could have used
an approach similar to Pajer et al. [34]. They developed an MCDA
tool named Weightlifter that directly visualizes the trade-offs in the
decision space based on automated additive weighting strategies after
experts have input their preferences in terms of weights or trade-offs.
In MyriadCues, due to the unknown nature of these trade-offs, we allow
more direct multi-way comparison of what-if scenarios with respect
to understanding the effect of the weights on both model rankings and
the metrics. An outcome of the use of MyriadCues is a more nuanced
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understanding of how different trade-offs could explain variability in
model fidelity rankings.

3.2 Visualization-Driven Model Evaluation
Human-centered analysis of simulation models falls into four broad
categories: i) analysis of similarities and differences in model out-
puts [20, 36], ii) analysis of input-output relationships [39], iii) vi-
sual communication of model decisions to non-expert users [4] and
iv) post-hoc model performance evaluation with respect to ground
truth [8, 26, 29]. While this categorization is generally true for any
domain, here we focus only on the climate science domain and discuss
our contributions in the last category.

Many visual analytic related methods focus on analyzing output
similarity or exploring the effect of high-dimensional parameter spaces
on model outputs. For example, Kehrer et al. proposed a faceted ap-
proach towards similarity analysis of multiple outputs from a model
over space and time [21], and this was extended by Poco et al. for
supporting similarity-based comparison for multiple models and out-
puts [36]. However, both approaches are limited by the number of
models (< 10). For parameter-space analysis, Wang et al. proposed a
nested parallel coordinates based visualization system [47], while Poco
et al. used a visual reconciliation method for understanding the effect
of input parameters on output similarity [37].

The goal of selecting appropriate model parameters is to achieve
optimal performance from climate models, for which visual steering
based techniques [39, 48] can be used. However, an open question
in climate science is: which metrics and output variables should be
considered for qualifying model performance as good or bad? Without
effective methods to quantify model performance (i.e., fidelity), it
is difficult to define an objective cost function for parameter tuning,
which explains the time and effort spent by scientists in the tuning
process [16].

With the exception of the work from Kothur et al. [24], where they
use reference data for assessing performance of ocean models, there is
little research using interactive visualization for multi-criteria fidelity
analysis for climate models. Existing visualization approaches for
model performance analysis are mostly static, suffer from clutter [9],
and do not scale beyond a few models and variables [6,44]. In this work,
we address this gap by using scalable, interactive visual comparison
methods derived through participatory design.

4 MODEL DIAGNOSTICS TASK ABSTRACTION

The first phase of our design study was focused on developing a shared
understanding of the model diagnostics goals between climate scientists
and visualization researchers. We collaborated with two climate scien-
tists from a national laboratory, with an average experience of 15 years
between them, for over a period of 2 years. We followed the nested
model [31] where a problem characterization phase was followed by
the iterative stages of visualization task analysis, design, and evaluation.
One of the climate scientists (a co-author of this paper) acted as a liai-
son [40] between the climate science and visualization research groups
and helped us facilitate interviews, build a shared understanding of
the state-of-the-art visualization techniques, and conduct participatory
design sessions.

4.1 Scientific Goals
We derived the following domain specific goals that were relevant for
solving this problem:
G1: Hypothesize about model fidelity. Scientists need to formulate
an initial hypothesis about “good” or “bad” models with respect to
a preferred metric. Climate science groups working on the model
diagnostics problem may have a preferred metric and they use it to
understand, with respect to an average fidelity score, which models
could be good or bad.
G2: Judge contribution of model outputs. Scientists need to evaluate
or refine the hypothesis by inspecting the contribution of many outputs.
Scientists are generally looking for cases where fidelity levels are
dissimilar for a given model across multiple output variables, and also
for different models for a given output variable.

G3: Assess fidelity consistency. Scientists might start with a preferred
metric but to test the consistency of the fidelity levels of a model they
often use a suite of statistical criteria. Fidelity is a proxy to understand
how much disagreement there is among models: two different fidelity
scores imply that the the model outputs were different. Often, they
need data-driven guidance for selecting a set of metrics for comparison.
G4: Assess fidelity robustness. Scientists need to investigate how
assigning different weights to output variables affect the fidelity levels
with respect to the chosen set of metrics, and also how they change
the agreement or disagreement levels across the metrics. The more
invariant the fidelity levels, a model is assessed to have more robust
levels of fidelity.

4.2 Comparison tasks
We involved our collaborators for distilling specific comparison tasks
for satisfying their analysis goals, as outlined below:
T1: Identify best/worst models. Identify top-ranked and bottom-
ranked models and detect small differences. For developing an initial
hypothesis about good or bad models (G1), scientists first want to
rank-order the models and visually identify the best and worst ones.
They also want to detect small differences in average fidelity values for
models, as given by a metric.
T2: Compare average fidelity. Visualize the magnitude distribution of
all models as the context for comparison. While scientists want to focus
on the top-ranked or bottom-ranked models, for developing a robust
hypothesis (G1) they also need to understand how the average fidelity
scores are distributed across all models and establish an appropriate
context for judging if the scores are reliable or not.
T3: Compare model-output dissimilarity. For addressing G2, sci-
entists want to understand if the fidelity scores for individual output
variables are consistent with the average/overall fidelity score (e.g., a
model having high fidelity score can have poor fidelity on one vari-
able) and also find the degree of variability in fidelity scores for one
particular variable (e.g., several models may disagree about the fidelity
scores leading to a high interquartile range). Similar levels of fidelity
across models and output variables is an expected pattern and the main
pattern of interest is the degree of disagreement. Even finding very
small differences is of interest to the scientists.
T4: Compare metric-metric disagreements. Visualize which met-
rics disagree, and by how much, across models and outputs. Scientists
usually start with their preferred metric or select a metric based on
their intuition. Each metric has different scale and semantics. They
need to visually judge the degree to which metrics disagree about
both the overall fidelity levels and at the level of each model-output
combination (G3).
T5: Understand fidelity change. This is a change detection task in
a comparative setting where scientists need to know how the average
scores and output-specific scores change in response to scientist-defined
weights to those variables (G4). Scientists are mainly interested in
spotting the big changes.
T6: Understand disagreement change. Gauge how weighing outputs
affect metric agreement/disagreement. This is also a change detection
task in a comparative setting, where scientists need to observe how
assigning different weights to variables can make metrics agree or
disagree more about the overall and variable level fidelity scores (G4).

An important take-away from this task distillation was that the com-
parison tasks are unlikely to be executed sequentially or in isolation.
It is a common scenario for scientists not to have a prior hypothesis
about expected model behavior. In that case, they start from task T4
and T6, which are complex multi-way comparison tasks focusing on
assessment of consistency and robustness, and subsumes other tasks.
To facilitate such composite multi-way comparison, we consider a set
of unitary tasks for informing the task-driven design space.

5 COMPARATIVE VISUAL CUES

In the second phase of our study, we characterized the design space for
achieving the multi-way comparison tasks. We conducted discussion
sessions between the climate science and visualization teams where
we jointly critiqued existing visualization solutions and as an outcome
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Fig. 3. A classification scheme for deriving comparative visual cues that address the tasks (T1, T2, T3, T4, T5, T6) for climate model fidelity
analysis. The visual cues, by leveraging the perceptual principles of visual encoding, help minimize comparison complexity by letting scientists
readily spot patterns of disagreement and stability across many combinations of models, metrics, and output variables

of many participatory design sessions, we derived a set of compara-
tive visual cues through a classification scheme. Comparative visual
cues leverage pre-attentive properties of visual encodings to facilitate
efficient search across many combinations of models, variables, and
metrics, for spotting small differences while maximizing accuracy of
comparisons. In this section, we first discuss the classification scheme
and then discuss the task-driven visual cues.

5.1 Classification Scheme

We adapted and extended the classification scheme proposed by Gle-
icher [10] for deriving a set of task-driven visual cues. In Figure 3,
we describe our classification scheme. Elements indicate what, among
models, metrics, and output variables, are being compared; and also
how many elements are being compared to indicate the complexity of
the task. Combining multiple elements, like hundreds of models and
tens of variables has a multiplicative effect on the scale and complex-
ity of comparisons. In terms of relationships among the compared
elements, scientists are mainly interested in finding small differences
in magnitude and also understanding which metrics, models, or output
variables, and their combinations, are most dissimilar than others. In our
scheme, we describe how we summarize these relationships which ulti-
mately guide how they are visually communicated through comparison
designs like juxtaposition or implicit and explicit encoding [11]. When
the relationships among data objects are approximately recoverable
but not precisely encoded in a visualization, we term this as implicit
encoding. A simple scatter plot is a good example, where the degree
of correlation between two dimensions is approximately recoverable
even without any explicit encoding of the correlation. Other examples
include quality metric [3] based reordering of layouts or dimensions
where one can gauge how closely related data objects are, using the
metrics as the guides. The last part of our classification scheme is about
realizing the comparison tasks by optimizing the visual search process.
To this end, we first needed to know which patterns we should optimize
for and accordingly decide the visual cues necessary for guiding sci-
entists’ attention to those patterns. A sequential search for patterns for
each of the many possible comparisons would be time-consuming and

ineffective. These comparative cues leverage the human vision system’s
capability to preattentively process patterns [14], thereby leading to a
much more efficient parallel visual search. The patterns that scientists
are mainly looking for are as follows:
Visualizing disagreement: Fidelity is a lens to understand how much
disagreement there is among models: two different fidelity scores imply
that the the model outputs were different. Similarity of fidelity levels is
the “normal” pattern because simulations, if perfectly parameterized
and calibrated, should all produce similar outputs resulting in similar
fidelity scores. However, in reality, scientists have to reliably under-
stand, where disagreements occur and exercise their expert judgment
to reason about and resolve those.
Visualizing stability: Stability of a model output or a metric is given
by the degree to which the fidelity levels are insensitive to different
weights assigned to multiple variables. These are important factors for
scientists to consider while they come to the final judgment of which
models are the best and the worst, and also, which metrics are most
effective in capturing the “true” fidelity of a model. Usually, there
are inherent trade-offs exploring which scientists can conclude under
which specific scenarios or conditions models and metrics are stable.

5.2 Cues for comparing model dissimilarity

To satisfy T1, which is the simplest among all the tasks, a visualization
needs to facilitate relative judgment of rank and magnitude (i.e., the
average fidelity scores) with a high degree of accuracy. To satisfy
T2, a point-based visualization is needed for looking at the magnitude
distribution of all models: one which is scalable with respect to about
100 models while at the same time allowing scientists to readily identify
a particular model.
Elements: The comparison (1 : n) involves many models for under-
standing small differences in average fidelity scores. T4 involves an
n : n comparison as one has to compare two sets of models, with two
different weighing schemes.
Relationship: For comparing magnitude difference across all models,
we use the average scores of models (across all variables) for ranking,
that can be used for sub-setting the top-ranked or bottom-ranked models.
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For summarizing pairwise (1 : 1) relationships between models, we use
the Euclidean distance as a measure of magnitude difference.
Understanding disagreement: We use relative positions of models
in terms of their average magnitude and rank. Magnitude difference
among models is expressed through a rank ordering of models and the
heights of the bars (Figure 3a). represent the average fidelity score
for a model. For representing all models, we choose a space-efficient
encoding that can represent all the models while at the same time
indicating their ordering with respect to their positions. As shown in
Figure 3b, the position of a dot indicates the rank of a model and any
change in position is quickly reflected by juxtaposing the two views,
thus representing sensitivity in rank changes to expert-defined weights.
While a box plot or a bean plot [18] could be used as summaries of
magnitude differences, here the goal was to directly identify the high or
low ranked models and use those as subsets for focusing the analysis.
Understanding stability: Changes in position can be hard to track if
multiple models change rank-based position at once. For this reason,
we provide explicit cues based on markers (arrow-heads) which indicate
upward (green arrow) or downward (red arrow) trend of rankings.

5.3 Cues for comparing model-output dissimilarity
To satisfy both T3 and T4, which are more complex than T1 and T2,
a visualization has to expressive [28] about dissimilar patterns so that
scientists spend minimal effort and time to detect them, among a large
number of model-output variable combinations. For T4, we need to
carefully consider the trade-off between scalability and effectiveness:
if there are many changes, we need to show only the significant ones
so that scientists can quickly understand the effect of the weights they
assign to variables.
Elements: The comparison involves combinations of many models and
many variables, therefore needing both one-to-many (1 : m) comparison
among variables and many-to-many comparisons n : m among models
and variables.
Relationship: For summarizing relationships among models, we use
lack of correlation, with respect to the fidelity scores across all variables,
as a measure of dissimilarity. For T3, we use implicit encoding for
communicating dissimilarity among models and for T4, we explicitly
encode salient changes.
Understanding disagreement: We use both position among models
and the connection among them, through lines, as cues (Figure 3c). We
term this plot as the slope plot [6], a hybrid between a slope graph [45]
and parallel coordinates [17]. For encoding the dissimilarity (n:m)
among models and variables, we considered two options. One of the
options was to use a color scheme to indicate the degree of differences,
which could have led to a heatmap based design. But color is less
accurate than position [2], especially in communicating small differ-
ences, which scientists most interested in. Therefore, we decided to use
positions of models along continuous axes that represented different
variables, and connect those positions along multiple axes by a polyline.
These polylines also added Gestalt effects [19] of continuity, proximity,
and connectedness, leveraging which experts could readily integrate the
differences for a single model across multiple variables. These Gestalt
effects help in implicitly encoding the differences among multiple mod-
els, resulting in efficient visual scanning and tracking of the differences
across multiple models, variables, and metrics, simultaneously without
putting too much cognitive load on the experts. Cues about variables
are provided by explicitly encoding the spread in terms of the interquar-
tile range. We also considered a multi-dimensional projection based
layout as an alternative design where many-to-many comparison would
be possible on a scatter plot where relative distances indicated differ-
ences among models. However, since this involved an abstraction over
pairwise distances, and the contributions of each variable would be
hard to recover, our experts did not prefer this method.
Understanding stability: As shown in Figure 3c, unstable models, in
response to differing variable weights, is expressed by shapes: by draw-
ing envelopes around the lines, the side containing the line indicates the
current weighted value of the metric and other side indicates previous
value. Cues about variables are additionally provided by a change in
vertical ordering of the variables, based on the degree of change.
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Fig. 4. Configurable magnitude plots. Experts can either choose
quartiles or rank based bins for understanding the ordering of models
computed by their weighted average of fidelity scores. The dot plots
complement the bar charts by providing flexibility to select models from
any range and also the ability to see changes among multiple models
readily when weights are adjusted. Scattered dots provide an immediate
cue about high sensitivity of models to the weight changes.

5.4 Cues for comparing metrics

T5 and T6 are the most complex tasks in this set as they involve multi-
way comparison across models, variables, and metrics. As mentioned
before, these tasks subsume T1, T2, T3, T4. For both these tasks, a
visualization has to be effective in linking and tracking model-output
combinations across multiple metrics.
Elements: The elements under comparison are metrics, models, and
variables. A noteworthy point here is that scientists generally choose
a particular metric as a reference and compare the outcome of other
metrics with respect to the reference, leading to a 1 : k comparison first
(k being the number of metrics), which is followed by repeating all the
other one-to-many or many-to-many comparison tasks k times.
Relationship: Sensitivity of magnitude difference or correlation across
models and metrics needs to be computed when experts assign dif-
ferent weights to the variables interactively. By default, all variables
are equally weighted. When different weights are applied, for summa-
rization of 1 : k relationships across all metrics, we first perform an
aggregation over all models based on their correlation or magnitude dif-
ference scores. Next we compute the difference between the aggregated
scores for each metric to indicate which metrics disagree the most.
Understanding disagreement: We use small multiples for comparing
across different metrics and use layout of the small multiples as cues
for indicating relative dissimilarity. Dissimilarity or differences with
respect to a reference metric (1:k association) is communicated through
implicit encoding: adjusting the layout of small multiples, where the
proximity of small multiples represent the degree of difference between
a reference and an associated plot. The layout can be adjusted either
by choosing the magnitude difference (i.e., the average difference in
ranks of models for a reference metric and and for an associated metric)
or the correlation (average correlation across models for a reference
metric and an associated metric).
Understanding stability: A change in layout indicates which metric
was the most sensitive to the change in weights. The layout could be
ordered in the following ways: juxtapose the most similar or dissimilar
metric (with respect to the reference metric) with the reference metric,
and juxtapose the metric that changed the most with the reference
metric. A sudden change in layout can cause change blindness [41].
Therefore, care is taken to provide options to the user for reordering
small multiples, which they can control interactively.

6 INTERACTIVE MULTI-WAY COMPARISON IN MYRIADCUES

We instantiate the classification scheme through MyriadCues (Figure 5),
an interactive, web-based visualization interface that resulted from mul-
tiple participatory design sessions involving visualization researchers
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Fig. 5. MyriadCues comprises: a) a set of controls for configuring different visualizations by selecting axes, data normalization and ranking
strategies, and adjusting the parameters for different views; b) a set of filters for subsetting across different elements; c) Magnitude Plots for
showing magnitude differences across models; d) Slope Plots for showing dissimilarities across models and variables; and e) legends and guides for
navigating the visualizations. In this view, bayes f actor is the reference metric, which means that models are color-coded based on their ranks with
respect to bayes f actor. These colors are used to link models in other small multiples, where their respective ranks are shown.

and climate scientists. Interactivity is required for providing scientists
with the flexibility to reflect their preferences and expert judgment
using multi-way visual comparison tasks. In this section, we describe
how MyriadCues helps us satisfy the task and design requirements
using comparative visual cues and user interaction.

6.1 Reconfigurable small multiples
The core design element of MyriadCues is a set of small multiples (Fig-
ure 5c,d) that scientists can configure based on the tasks they want to
perform. They can use magnitude plots (explained below) and slope
plots in combination or separately. The small multiples (each repre-
senting a metric) are laid out sequentially. While we considered a
force-based layout [27], the potential visual complexity in interpreting
the relative distances and their changes (on weight adjustment) led us
to implement the sequential layout.
Magnitude Plots: We use a combination of bar charts and dot plots and
collectively call them magnitude plots. As shown in Figure 4, the height
of a bar represents the weighted average of a particular metric across
all variables for a given model. The bar chart for a reference metric is
always rank-ordered (from left to right). Here, the top 10 models are
shown with respect to the Bayesian likelihood metric. For additional
metrics like the Brier skill score, the same ten models are displayed
with their rank with respect to the Brier skill score indicated on the
top of the bar. This encoding choice helps link the reference rankings
with other rankings and readily observe magnitude differences. When
weights are changed, a small green or red arrow indicates whether the
ranking of each model improved (green) or degraded (red) in response
to the change. The dot plots allow selection of models of interest and
help in estimating the degree of rank change on adjustment of weights.
Each dot plot can be configured by an expert. As shown in Figure 4a,
the models can be divided into quartiles based on the minimum and

maximum range of a metric. This view is useful to spot how the ranges
and the distribution on models are affected by the weighting of metrics
for different outputs. An alternative binning method is to choose equal
intervals and a rank based ordering. As shown in Figure 4b, this view
helps in quickly spotting which models changed positions, as we can
see for the pink model for both the metrics. This view is especially
useful when most of the models are sensitive to the weight changes and
there are a lot of simultaneous position changes.
Slope Plots: The expressiveness and effectiveness of slope plots in
communicating small differences can be observed in Figure 5d. We can
see that among the top five models (with respect to Bayes factor), the
red and the purple model show significant differences in rankings with
respect to the brier skill score. For example, by tracing the lines across
the variables, it is immediately obvious that the PSL variable contributes
to the poor performance of the red model while the SWCF variable
contributes to the poor performance of the purple model. Using this
visual cue, an expert can quickly and accurately detect small differences
in fidelity. Slope plots also help clearly express a key discrepancy
scientists are interested in. As part of T3 (understanding model-output
dissimilarity), they would like to quickly find model pairs with similar
average fidelity level but with low correlation with respect to individual
fidelity levels for specific outputs. The connectedness among models
using polylines makes it very quick to spot these discrepancies visually,
by identifying line crossings that indicate a lack of correlation. We also
let experts interactively select a model and query the system to find the
most similar or dissimilar model with respect to a given metric.

6.2 User Interaction
In addition to providing optimal encodings for reducing comparison
complexity, MyriadCues incorporates a number of interactive capabili-
ties for experts to further control their search space and exercise their
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expert judgment. We describe the key interactive capabilities below.
Selecting a reference metric: At the outset, we made a key design de-
cision. We first let scientists choose a reference metric (Figure 5d) for
facilitating the 1 : k comparison task (T5) as part of T 5 (Understanding
metric-metric dissimilarity). Without a reference, k : K comparisons
(many-to-many comparisons among metrics) would have been needed
which would make the search space for disagreement or stability pat-
terns too complex to navigate. Reference selection is also consistent
with the scientists’ need to compare a set of alternative metrics with a
preferred metric.
Selecting and highlighting models: Scientists can select a set of mod-
els from any of the small multiples of metrics, but they are rank or-
dered (T1) based on the reference. We constrain the number of models
in the selection set to be 10, as we can use the most distinct categorical
colors [13] for these 10 models and avoid color mixing, which can not
only occlude the slope plots, but also prevent multi-way comparison
among the magnitude and slope plots (T2, T3). These 10 could be the
top 10, bottom 10 or any random set of 10 models selected through
interaction with the dot plot. Coloring therefore serve as a way to link
the same model across the small multiples (Figure 5c, d).
Dynamic ranking: As shown in Figure 5a,b, MyriadCues provides
a set of filters for sub-setting models, outputs, or metrics, based on
experts’ preferences for all the tasks. Once a set of models are filtered,
the rankings are automatically updated. The rank criteria can also be
changed to using a weighted mean, median, or variance among outputs.
Flexible reordering: For controlling the ordering of outputs in slope
plots and the layout of the small multiples, experts can use a number
of reordering options. For slope plots, one can order the plots from
top to bottom in increasing or decreasing order of mean or variance
across all outputs (T3). For small multiples, experts can choose a layout
based on most similar first or most dissimilar first (T5), with respect
to a reference metric. As shown in Figure 5c, the bayes f actor and the
bayesianl ikelihood metric exhibit the most similar rankings.
Finding the most dissimilar models: Within the top ten or bottom
ten models, scientists are often interested in finding out which models
are most dissimilar with respect to all the output variables and if that
dissimilarity changes by varying weights of output variables (T3, T5).
In that case, scientists can select a model and then MyriadCues will
automatically display the most dissimilar model within the top ten
or bottom ten. This lets scientists quickly compare this dissimilarity
across all other metrics and assess consistency.
Exploring stability: For visualizing stability of models (T4, T6) from
different perspectives, scientists can explore multiple options. They
can fix the set of selected models (by assigning colors to a chosen set),
adjust weights of outputs and observe how these selected set of models
respond to these changes. Using another option, they can also choose to
dynamically view which set of models fall within the top or bottom ten
by not fixing the colors. This is accomplished using the dot plots, where
drastic position changes of models provide a cue for instability. In this
case ,colors get assigned to the top or bottom 10 set, the membership of
which is a function of weight changes. In our experience of deploying
MyriadCues, while scientists appreciated the flexibility to choose these
perspectives, they were mostly interested in the first case, where they
could fix a set of models and observe their stability.

7 EXPERT CASE STUDIES AND SUBJECTIVE FEEDBACK

Evaluating MyriadCues was challenging as there is little ground truth
data and consensus about which metrics effectively capture model fi-
delity, implying that focusing on questions around “finding the best
or worst model” would have led to a high degree of individual differ-
ences among experts. In the light of these challenges, we decided to
assess the subjective user experience [25] of experts by centering our
evaluation around two factors: if the experts can develop confident
judgments about model fidelity using the tool and if they perceive
the tool as useful enough to be adopted in their own analysis routine.
We focused on the two original goals for this design study: whether
multi-way visual comparison can lead to a better understanding of the
consistency and robustness of model fidelity levels and the associated
factors. For the following case studies, model simulations were taken

Brier skill score (selected metric)bayesian_likelihood (preferred metric)

AODVIS
SWCF
LWCF
T_850mb
T_200mb

PRECT
TREFHT

RELHUM

AODVIS

SWCF
T_850mb

Understanding where (for which output variables) models disagree the most

3
7

7 8

Selecting models whose ranks differ across the 
two metrics and exploring the reasons

bayesian_likelihood (reference) Brier skill score

c.b.

a.

T_200mb
T_850mb

bayesian_likelihood Brier skill score

9 10 910

Selecting bottom-ranked  
models & exploring  
consistency across metrics

T_200mb
RELHUM

U_200mb
U_850mb

T3

T1, T4 T3, T4

Fig. 6. Case study for assessing consistency among fidelity met-
rics. The different stages include: understanding what causes disagree-
ment among models (a), and inspecting cases where metrics disagree
about the fidelity levels across multiple output variables (b, c).

from a 256-member perturbed parameter ensemble of simulations in the
Community Atmosphere Model [33], where 16 parameters controlling
the emissions of aerosol particles and their interactions with clouds
were systematically perturbed. Five-year simulations were performed
in an atmosphere-only model with prescribed sea surface temperatures
(SSTs) [38]. We initially conducted a three-hour long session with our
collaborator for exploring different usage scenarios using MyriadCues.
Next, she used MyriadCues by herself over the next few days and
derived several case studies, two of which we report below.

7.1 Assessing consistency among alternative metrics

The purpose of this case study was two-fold: i) our collaborator wanted
to experience how MyriadCues can fit into her analytical routine, and
ii) she wanted to compare her preferred statistical metric to other al-
ternatives and assess the consistency of model fidelity with respect to
those metrics. To satisfy these goals, she used MyriadCues in con-
junction with the AMWG package, a climate model diagnostics pack-
age developed by the Community Atmosphere Model’s Atmosphere
Model Working Group (AMWG). The AMWG package helps visualize
geographical distributions of output and observation data, providing
complementary information for expert judgment of fidelity. Our collab-
orator sub-selected a set of 10 models based on the AMWG maps and
in MyriadCues she started her analysis by selecting Bayesian likelihood
score, her preferred metric, as the reference. By comparing small multi-
ples of magnitude plots (Figure 4a), she found that the Brier skill score
provided somewhat similar rankings, but, as observed, there were small
differences, because of which she wanted to compare these metrics in
greater detail. By looking at relative dissimilarities among variables
using the slope plot (Figure 6a), she found that the Bayesian likeli-
hood score exhibited less disagreement among the models (depicted
by similar slopes) for different output variables, than exhibited by the
Brier skill score (depicted by dissimilar slopes). However, the average
fidelity scores for Brier skill score were higher and more consistent
with each other than the Bayesian likelihood score (as demonstrated
by the more abrupt variation in slopes in Figure 6a, where all models
seemed to have low fidelity for T200mb and SWCF variables. These
patterns were surprising but not conclusive. To investigate more, our
collaborator selected the top-ranked models. But there was little dis-
agreement between the metrics. Next, she selected the bottom ranked
models. or uqcase16 (light green) and uq_case82 (light blue), the
Brier Skill Score and the Bayesian Likelihood score gave different rela-
tive rankings (Figure 6b). The slope plots indicated that this difference
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was attributable to uqcase82 performing better on Brier Skill Score
on the variables RELHUM200mb, U$850$mb, U$_200$mb, and T200mb,
as compared to the their performance on the the Bayesian Likelihood
score. With respect to T200mb, both models performed poorly, there-
fore one could not conclude which model had a better fidelity. However,
with respect to U200mb, the AMWG maps verified that uqcase82 had
a better fidelity than uqcase16, which was consistent with the Brier
skill score. Next, our collaborator selected the uqcase51 (green) and
uqcase200 (magenta) models which exhibited different relative ranks
with respect to both the metrics (Figure 6c). Examining the AMWG
maps of these fields, she found that the much lower fidelity of uq-
case200 for the variable T$850$mb (according to the Brier Skill score)
was associated with a high-latitude cold bias, high-latitude high pres-
sure bias, and an overly-strong jet stream, particularly in the Northern
Hemisphere. This led our expert to assess uqcase200 as lower in
overall fidelity, which was more consistent with the ranking by the
mean Brier Skill Score. A similar conclusion was derived in case of
the uqcase51 model as well. As a result of these evaluations, she
concluded that the Brier Skill Score seemed to be more consistent with
the overall rankings that she would have assigned to these models, and
concluded that she would prefer the Brier Skill Score over the others
for model ranking, which was a change from her initial preference for
the Bayesian likelihood score. Finally, she assigned weights to each of
the model variables, to explore how robust the rankings would be to
changes in variable weights. Most models did not change their ranking
after assigning their weights, when using the Bayesian likelihood, or
the Brier Skill Score. Overall, she concluded that “the Brier Skill Score
was most consistent with the rankings she would likely have assigned
based on the diagnostics and metrics from the AMWG package”. She
also felt the need to diagnose more carefully, the computation of the
fidelity levels using the Bayesian likelihood score. This exercise was a
satisfactory experience for our collaborator as she could directly realize
the value of MyriadCues in re-assessing her hypothesis and preferences.
She commented: “We currently have only limited tools for performing
multi-model comparisons, and none of our current tools employ inter-
active features in the visual display of data. While I initially was unsure
whether interactive features would add value to the tool, many of the
interactions are very helpful because they allow users to quickly and
intuitively reduce the clutter, focus on specific portions of the data (e.g.
by simultaneously comparing models across all the metrics), or quickly
access additional details about fidelity. This allows users to explore
the data much more reliably and efficiently than would be possible
using typical methods where a script is written to generate a static plot,
and the script needs to be updated and run again to generate any new
display of the data.”

7.2 Assessing robustness of model rankings
The purpose of this case study was to assess the efficacy of MyriadCues
as a standalone tool, by using it to reduce the complexity of possible
comparisons to a few important ones and derive hypothesis about the

robustness of the model rankings. For this case study, 100 models, 15
output variables, and 15 variables were selected by our collaborator.
Next, our collaborator selected the Brier skill score metric and exam-
ined the rank and slope plots to understand which factors contributed
to models achieving a high or low ranking on this metric, and how sen-
sitive these rankings were to the weighting of individual variables. The
variable AODVIS (Aerosol optical depth) stood out in displaying a large
variance between models in their fidelity, as measured by the standard
deviation (Figure 7a). AODVIS however, is less important to evaluating
climate model behavior than other variables in this collection; aerosols
are of less physical importance to the climate system than variables such
as precipitation, temperature, and clouds, and AODVIS is an imperfect
measure of aerosol amount in the atmosphere. Therefore she decreased
the weight of AODVIS; after this change, while uqcase230 was still
the highest-ranked model, and eight of the top ten highest-ranked mod-
els were still the same, the rankings of other models changed. Next,
she assigned new weights to some of the other variables to reflect
their approximate relative physical importance, and reduced weights of
variables that likely contain redundant information (e.g., TREFHT and
T850mb; the temperature at 10 m about the Earth’s surface and tempera-
ture at 850 hPa, in the lower troposphere)(Figure 7b).By examining the
highlighted lines in the slope plots, she identified patterns among the
most highly ranked models (Figure 7c) that were responsible for their
superior performance on the Brier skill score metric. Next, by look at
the small multiples of the magnitude plots for all metrics, our collabo-
rators found the Bayes factor metric to exhibit a uniform distribution of
fidelity scores, suggesting high information content. She compared the
results between the Brier Skill Scores and the Bayes factor metric (Fig-
ure 7d). Comparing the slope plots revealed that the variable T$200$mb
exhibits far greater variability in the Bayes factor than in the Brier skill
score. Our expert speculated that this different behavior might arise
from differences in how the two scores are constructed, since the Bayes
factor discounts model-observation discrepancies below a pre-defined
threshold. Among the ten highest-ranked models, all of them consis-
tently performed above average on the weighted average metrics for
the following variables: LWCF, TREFHT, T850mb. Most also performed
above average on RELHUM850mb, PRECT, and PSL. Some models com-
pensated for poor performance on one variable by performing well on
another variable, for instance, uqcase206 (green) performed poorly on
T200mb and RELHUM200mb, but better on T850mb and RELHUM850mb
than most other models. The ten lowest-performing models (Figure 7e),
by contrast, mostly performed below average on the variables LWCF,
TREFHT, T850mb, RELHUM850mb, PRECT, and PSL. Interestingly, SWCF
did not appear to be a strong predictor of overall model fidelity, al-
though the highest-performing model, uqcase230, performed higher
than average on this variable. The Brier skill score of these models
was particularly poor on the variable LWCF. To better understand what
caused this low ranking, our collaborator examined the global bias
metric (Figure 7f), which provides a information on a complementary
aspect of model fidelity. Most of the lowest-performing models exhib-
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ited a strong negative bias in LWCF, meaning that clouds did not produce
enough warming through their long-wave forcing effect, and these mod-
els also mostly were colder than other models in the lower and upper
troposphere (TREFHT, T850mb, T200mb). An exception to this pattern
was uqcase157, which performed similarly poorly on the mean Brier
skill score, but exhibited a very different pattern of behavior across the
metrics for the individual variables, as shown. The normalized view
of the slopeplots revealed a very different behavior for this model on
the pattern of global biases; the model had almost no bias in LWCF
while almost all other models had a negative bias; uqcase157 was also
warmer than most other models, suggesting a strong inverse correlation
between mean LWCF and temperature in this simulation ensemble. In
summary, through this exercise, our collaborator was able to reason
about the outputs contributing to good or poor overall model fidelity,
and iteratively flag models and variables for progressively investigating
the stability of model fidelity rankings in response to the weighting
of different physical variables. Our collaborator’s appreciation for the
flexibility of the tool is reflected in this comment : “By enabling us
to supply our own weights, the tool flexibly allows us to update the
influence of different aspects of model fidelity (e.g., fidelity of different
physical variables), incorporating our physical understanding of which
aspects of system behavior are most important, and immediately receive
feedback on how this influences overall model ranking.”

7.3 Expert Interview and Feedback

Besides the case studies, we validated the utility of MyriadCues by
recording the subjective feedback of scientists. To this end, we used
questionnaires and in-person, structured interviews for gaining an un-
derstanding of how scientists benefit from using MyriadCues to solve
model fidelity probems. We recruited two senior climate scientists,
both of them work as senior climate scientists in a national laboratory
and have an average of 17 years of research experience between them
and were not familiar with the tool. We used the data set from the first
case study and recorded their feedback in a 40 minute long session.

The two interview sessions were structured as follows. We first gave
them a brief (5 miniutes) introduction to the functionalities of the tool.
Next, we asked them to use the tool for reasoning about good and bad
models. We instructed them not to look for a correct answer, as we
did not have any ground truth data. Instead, we suggested that they
should assess if and how the tool can help them in making reliable
judgments about choice of metrics and disagreement among model
rankings. We encouraged think-aloud protocol during the sessions.
They explored the analysis scenarios for about 30 minutes and then
filled out the questionnairre. We observed that the participants had
different starting points in their analysis process, each of them started
with their own preferrend metric and expressed surprise at some of
the disagreements about model fidelity across other metrics. They felt
that the tool provided them with enough insights to develop alternative
hypotheses about model fidelity. From the responses given by our
participants and comments given during the interview, we group the
feedback into the following categories. i) Effectiveness. Our first
participant commented that: “This tools gives you a comprehensive
picture across many variables and you can do much more than looking
at one or two numbers”. He also observed that taking many factors
into account adds to the task complexity and it is essential that we
keep the interactions as simple as possible going forward. Our second
participant commented that “this is very nicely designed”, and the
main advantage is that this tool “integrates many different metrics”
and let him observe model behavior going beyond a few preferred
metrics. The feature in the tool they most liked was the pairing of the
magnitude plot with the slope plot that gave simultaneous cues about
model ranking and contributions of the variables towards the weighted
scores. ii) Flexibility. Our first participant particularly appreciated
the level of flexibility in his analysis that the tool allows:“the good
thing is that this is so flexible in choosing any analysis scenario” and
adapt the selections accordingly for detecting small differences. Our
second participant, while being positive about the interactions through
which he could assign weights and observe the changes, stressed on the
need to have better support for automatically finding or highlighting

variables that are correlated so that the weights could be adjusted
using that information. iii) Advantages over the state of the art
Both our participants observed that this tool will help speed up the
analysis process as existing techniques mostly involve manual scripting
and allow them look at few variables and model at a time. They
further observed that this tool can be a nice complement to the existing
diagnostic packages that lets them visualize spatial patterns. Our second
participant also mentioned that this tool can be very useful in cases
where “you need to track model errors over time” and that “there is
no tool for that right now”. He commented that the small multiples
can be easily configured for showing different temporal instances for a
particular metric. iv) Shortcomings. Both experts observed that while
the tool is immediately usable, the tool also has a great potential to
solve an open problem in climate science: how to choose parameters
with the knowledge of model fidelity? This tool currently does not
support parameter analysis and that is our planned next step. Our
first participant also commented that he should be given the option

“to choose from a list of many different variables” and that the tool
should support automatically supporting NetCDF files. v) Potential
for adoption. Both experts were enthusiastic about using the tool as
part of their own analysis routine and the lack of prior familiarity did
not seem to be a barrier. One of them commented that “you should
release the software as soon as possible” for other scientists to benefit
from it. They observed that the tool has a great potential for adoption
by the broader climate science community and we should engage in
more outreach activities to build awareness about this research.

8 CONCLUSION AND FUTURE WORK

The design study reported in this paper is a significant first step to-
wards developing a viable solution for addressing the long-standing
need of greater transparency in multi-criteria model fidelity analysis.
Through our case studies, we demonstrated that comparative visual
cues were effective and MyriadCues was able to inspire confidence in
climate scientists, both as a complementary and a standalone tool for
performing complex, multi-way comparison tasks. Feedback from the
broader community has demonstrated a strong potential for the adop-
tion of this tool by modeling groups. These contributions should be
understood in the context of the state of the art in climate model fidelity
analysis where interactive visualizations are rarely used and data tables
summarizing metric scores for model outputs are often preferred by
climate scientists over visualizations for building their hypotheses. Cur-
rently, besides integrating parametric analysis methods, we are working
on addressing two shortcomings of MyriadCues. First, MyriadCues
does not capture analytical provenance. This is important, as scien-
tists want to keep track of different versions of model simulations and
their corresponding diagnostics. To this end, we will be developing a
provenance-enabled backend that helps build a shared knowledge base
about model outcomes. Second, we are working on making the design
and implementation of MyriadCues even more scalable, to support
the simultaneous analysis of upwards of 500 simulation models. We
are also engaging in outreach activities beyond the climate science
community: our solution for multi-criteria decision analysis is equally
applicable in data science scenarios, where there is a growing need
for going beyond traditional accuracy metrics for machine learning
models and incorporate metrics about bias, fairness, interpretability, etc.
We will apply MyriadCues in these scenarios and thereby establish a
domain-agnostic, comparative visualization approach for tackling these
cutting edge model diagnostics problems.
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based comparison of many categories in small-multiple displays. IEEE
transactions on visualization and computer graphics, 19(12):2287–2296,
2013.

[23] G. A. Kiker, T. S. Bridges, A. Varghese, T. P. Seager, and I. Linkov.

Application of multicriteria decision analysis in environmental decision
making. Integrated environmental assessment and management, 1(2):95–
108, 2005.
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