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Abstract

Human-in-the-loop data analysis applications necessitate greater
transparency in machine learning models for experts to understand
and trust their decisions. To this end, we propose a visual analyt-
ics workflow to help data scientists and domain experts explore,
diagnose, and understand the decisions made by a binary classifier.
The approach leverages “instance-level explanations”, measures of
local feature relevance that explain single instances, and uses them
to build a set of visual representations that guide the users in their
investigation. The workflow is based on three main visual repre-
sentations and steps: one based on aggregate statistics to see how
data distributes across correct / incorrect decisions; one based on
explanations to understand which features are used to make these
decisions; and one based on raw data, to derive insights on poten-
tial root causes for the observed patterns. The workflow is derived
from a long-term collaboration with a group of machine learning
and healthcare professionals who used our method to make sense
of machine learning models they developed. The case study from
this collaboration demonstrates that the proposed workflow helps
experts derive useful knowledge about the model and the phenomena
it describes, thus experts can generate useful hypotheses on how a
model can be improved.
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1 Introduction

In this paper we propose an interactive workflow and a visual user
interface to help data scientists and domain experts diagnose and
validate binary classifiers. The approach we suggest is based on
a mix of automated and interactive methods that guide the user
towards understanding what decisions a model makes, which ones
are correct or incorrect, and potential strategies to improve them.

Being able to explore the decisions a model makes and identi-
fying potential issues is crucial in application areas where experts
need to get a sense of how the model works and build trust in its
decisions. While common practice in much of the machine learning
endeavors is to focus on model accuracy, many researchers have
voiced the need for more transparency when the application domain
requires it [4,8,12,22,23,31]. A recent DARPA (Defense Advanced
Research Projects Agency) program called “Explainable AI (XAI)”,
for example, calls for more research in this area and declares, as
the main motivation for the program that “the effectiveness of these
systems is limited by the machines current inability to explain their
decisions and actions to human users” and that “it is essential to
understand, appropriately trust, and effectively manage an emerging
generation of artificially intelligent machine partners”.
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In addition to evaluating a model in terms of accuracy, we pro-
pose the idea of semantic validation, the need for domain experts
to verify that the decisions a model makes are plausible when com-
pared against their mental models of the problem. For instance, in
healthcare settings, medical doctors often want to see examples of
recommendations the model provides and need to gain trust in it
before they feel comfortable with deploying it in real-world settings.
Such reservations in deploying models without having an opportu-
nity to manually verify what decisions they make are well justified
as it is entirely possible for a model to achieve high accuracy and
yet provide dramatically erroneous recommendations [8].

Another important factor to consider is that domain experts and
data scientists are often working in collaboration to solve a particular
problem (or they are actually the same person covering both roles).
Being able to manually inspect a model can give them an opportunity
to generate useful insights on how a model can be improved. While
commonly used aggregate statistics such as area under the curve
(AUC) give a sense of the overall accuracy of the model, and can
be used as a parameter to compare between different models, they
do not provide insights on how or why a model fails to capture
important phenomena accurately.

Some existing methods do provide more transparency and useful
information for enabling better understanding and diagnostic pur-
poses, but they tend to be limited and specific to a particular kind
of model. For example, logistic regression and decisions trees are
commonly regarded as more interpretable models thanks to their
ability to provide information on feature weights and / or specific
decisions the model makes (decision trees) [12]. These solutions
are however limited by a number of factors. Since they are specific
to the selected method, they are hard to generalize and cannot be
applied transparently to other types of models. Furthermore, they
only provide a limited picture of what decisions the model makes.
Feature weights provide a highly coarse summary of how relevant
features are globally, but they do not provide information on how
the model makes decisions locally, for a selected set of instances.
Even more transparent methods, like decision trees, tend to grow
very large and are not easy to parse visually, especially for data sets
with a high number of dimensions / features.

To address these issues we propose a workflow, aimed at machine
learning experts and data scientists, based on instance-level expla-
nations, computational methods to derive a description of how a
model makes decisions on single data items, without having access
to the internal logic of the model (i.e., using the model as a black
box). These explanations are then aggregated and used as input to a
visualization system that enables the browsing of model decisions
and assessment of their quality.

The work we describe in the paper stems from a one year collab-
oration with a group of domain and machine learning experts from
the NYU Langone Medical Center. In our collaboration, we worked
together to make sense of models built to understand how patients
are handled in the hospital and to figure out whether important out-
comes of interest can be predicted correctly. This resulted in the
development of an interactive model diagnostic workflow using vi-
sual explanations of model behavior that is the main contribution of
this work. The rest of the paper is organized as follows. We present
related work in the next section. We provide an overview of model
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Figure 1: Our proposed Model Diagnostics workflow extends the conventional Model Building workflow in machine learning for enabling
domain experts to reason about the semantic validity of the decisions made by any model through multiple linked visualizations of statistical
performance summaries, explanations, and item-level distribution of features. By iterating through explanation-level summaries and item-level
details, experts are able to generate diagnostic insights about the quality of both the data and the model. This ultimately helps to improve data
acquisition and model generation processes belonging to the original workflow.

diagnostics goals and of the proposed workflow in Section 3. We
then describe in detail the instance-level explanation algorithm we
use in Section 4 and the interfaces we built in Section 5. Section 6
reports on a use case we built to show how the workflow can help
perform useful and actionable model diagnostics. Section 7 dis-
cusses the results and provides a number of reflections and lessons
we have learned from this collaborative exercise.

2 RelatedWork
In the following, we discuss model explanations and visual analytics
techniques used for interacting with classification models.

2.1 Model Explanations: Why and How
Explanations of behavior of autonomous systems [19] or compu-
tational models [11] can lead to a high degree of human-machine
trust. In machine learning, model explanations are beginning to be
used in human-in-the-loop data analysis applications for commu-
nicating information about model behavior and predictions. While
there are some studies [28] that show that explanations can lead
to over-reliance on the system, generally it has been posited that
model explanations lead to a high degree of human interpretability
and trust [20]. Similar to the latter, our goal in this work was to
develop a visual analytic workflow for model explanations and to
work closely with data scientists and domain experts to understand
how that could lead them to understand and trust model behavior.

In the literature, we find two contrasting purposes behind generat-
ing model explanations. The first approach is embedded within the
interactive machine learning pipeline and helps end users in refining
a model’s predictions by interacting with the model structure. This
helps users to build a mental model about the model reasoning pro-
cess [18]. Through the EluciDebug approach, Kulesza et al. lay out
a set of principles for the process of explanatory debugging using
a Naı̈ve Bayes classifier model. Although the principles are gener-
ally applicable, the explanation technique is specifically applicable
only to a particular model. Furthermore, additive models enable
intuitive explanations through feature contributions that allow both
to visualize the decision making process for single instances [25]
and feature contributions on a population level [8]. However, this
solution requires the use of an additive model and as such it is not
generally applicable.

To overcome this limitation, a second approach for explanation
generation is to treat the machine learning model as a black box, by-
passing the model structure, while communicating the input-output
relationships and their relevance to a model’s decisions to an analyst,

e.g., inferring rules from a neural network [10], or generating expla-
nations [17, 27]. We adopt this black-box approach in our workflow
for benefiting domain experts, who are not trained in machine learn-
ing, and also for providing data scientists with a model-agnostic and
generalizable diagnostic interface for inspecting model quality. In
previous work, local explanations have been used to diagnose how
models make decisions for single instances of a data set [15, 17, 27].
In contrast, we provide an interactive workflow where users can
explore aggregated representations of explanations and better under-
stand the context of model decisions by iterating across explanation-
level and instance-level visual summaries of prediction quality.

2.2 Human-in-the-Loop Inspection of Classifiers

Researchers have recently demonstrated how human interventions
can help in greater accuracy in construction of classifiers, when
compared with a purely automated approach [29]. In this work,
Tam et al. used information theory to show how soft knowledge
of model developers can be encoded in decision trees, and they
advocate a tighter integration between human and machine-centric
processes for model development. The goals for integrating visual
analytic techniques and classification methods fall broadly into three
categories, as proposed by Liu et al. [21]: i) model understanding, ii)
model diagnosis, and iii) model refinement. Our proposed diagnostic
workflow (Figure 1) encompasses the goals of understanding model
behavior and diagnosing the model decision space for enabling data
scientists and domain experts to generate insights about potential
inadequacies in the data and in the model quality. The refinement
step is an obvious action as a result of these insights, but is outside
the scope of our work.

Analyzing summary statistics of model performance through the
lens of visualization techniques is the most common approach for
finding matches and mismatches between model predictions and
ground truth data. To this end, ModelTracker [3] provides a unified
interface for error detection and debugging for binary classifiers
showing item-wise distributions of prediction scores. Bilal et al.
propose the confusion wheel visualization [1] and other linked views
to show probabilities of items belonging to different classes for
multi-class classifiers. Squares [26] provides a single, unified visual-
ization of performance metrics and easy accessibility to the data for
debugging multi-class classifiers. For enhancing the interpretability
of classifier predictions, Cortez and Embrechts [9] use a sensitivity
analysis approach for letting users understand the effects of variation
of input values on model outputs. While these methods are able to
diagnose performance issues at the level of a single item [1, 3, 26]
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or single features [9], they lack a holistic summary of the entire
decision space that exposes associations among subsets of items
and features, and communicates the reasons behind the model deci-
sions. Through an explanation-based approach, we can let analysts
explore these associations for a large, high-dimensional data set,
drill-down to individual items, and diagnose potential problems with
respect to both global and local decisions. This leads to actionable
insights about the limits to which model quality can be improved,
and ultimately, hints about how to improve the data.

3 Model Diagnostics

We use the term model diagnostics to indicate the steps necessary
for a domain expert or a model developer to semantically validate
the decisions made by a model using their domain knowledge. In
this section we outline the different goals for a user when using a
model diagnostic interface and provide an overview of the imple-
mentation of the resulting workflow (Figure 1). The workflow was
derived through a long term collaboration among visual analytic
researchers and model developers and domain experts in the medical
field, specifically in the application scenario of hospital visits. The
over-arching goal in this scenario is to use predictive modeling for
reducing patient wait time and optimizing the hospital resources
needed for admitted patients.

3.1 User Goals

In the course of our interactions with domain and machine learning
experts and analyzing a variety of model building problems, we
realized that the model diagnostics problem can be decomposed into
the following main goals; which we express as a set of questions as
shown in Figure 1.

G1: What is the overall accuracy of the model? In this step, ex-
perts need to get an overview of the distribution of prediction scores
across the data items, derive an understanding about the uncertainty
associated with predictions of certain items, and generally where the
predictions are correct or incorrect.

G2: What are the main decisions the model makes? A trained
classifier creates a decision space that maps a (potentially high-
dimensional) input space into the output space defined by the two
labels true and false. Understanding what these decisions are and
how frequently they are made is a crucial piece of knowledge do-
main experts want to draw from the classifier. For instance, in the
healthcare scenario we explore in this paper it is crucial for domain
experts to know that the vast majority of decisions the classifier
makes are based on a small set of drugs (features). They also want to
ensure that different sets of drugs are used by the classifier to make
decisions about different sets of patients (e.g., a group of patients
is characterized by Ondansetron and Sodium Chloride, whereas
another is characterized by antibiotic drugs).

G3: How accurate are the decisions the model makes? Together
with knowing what decisions the model makes, it is crucial to also
know how accurate these decisions are. Using the same example as
above, it is not sufficient to know that the model classifies a group
of patients according to the drugs they received, but also how often
this decisions are correct or incorrect.

G4: How can one change the data or the model to improve its
decisions? Understanding decisions and assessing their accuracy is
relatively useful, but the ultimate goal for a model developer is to
actually gain actionable insights on how the model can be improved.
Some of the insights experts want to derive include: whether the
model parameters should be tuned or a better set of features should
be derived.

In this work we do not provide specific support for the actual
parameter tuning or data processing steps necessary to improve
the model. The black-box nature of our approach is illustrated in
Figure 1, which shows that the model diagnostic workflow is an ex-
tension of (and not a part of) the existing model building workflows

that data scientists follow as part of their routine. Modelers have
specific ways and tools to perform these steps and intervening on
their established practices is out of the scope of this work. Rather,
in this work we focus on providing support for the diagnostic part
experts may want to execute at the end of each modeling round and
which is currently not well supported by existing tools and practices.
The diagnostic insights produced by our workflow provides hints
about whether the input data or the model structure needs to be
changed for improving the prediction quality.

3.2 Workflow

The workflow we propose results from two pre-processing opera-
tions: explanation generation and visual mapping.

Explanation generation takes as an input a data set and a trained
binary classifier and creates for each instance in the data set an
explanation. An explanation is a description of the logic (or rule) the
classifier uses to assign a given label to the instance. For this purpose,
we leverage a method developed by Martens and Provost [23], which
computes, for a given instance which features need to be “removed”
in order to change the classification outcome. For instance, in a text
classification problem, an explanation for a document consists of the
words that need to be removed in order to change the label originally
assigned by the classifier. In Section 4 we describe in more detail
how the explanation method works.

Visual mapping takes as an input the data set and the set of expla-
nations, and builds a set of interactive visualizations (Figure 1) that
support the user goals we outlined above. The interactive workflow
revolves around three main linked interfaces; each one supporting
the analysis of model decisions at different levels of granularity and
addressing the user goals.
Outcome-level. The first step focuses on overall accuracy of the
model, using a representation similar to a confusion matrix. The
main goal of this step is to get a sense of how data distributes across
the prediction score computed by the classifier (typically a score
between [0,1]), and the four possible outcomes: true or false positive
and true or false negative. By visualizing how data distributes across
the four possible outcomes the user can gain a sense of how accurate
the model is (G1) and whether errors cluster around particular sets
of scores.
Feature-level. The second step uses the computed explanations to
generate an overview of decisions made by the classifier and their
accuracy. Each explanation is described by the set of features it uses
to explain an instance and, as such, it provides a description of how
the model makes its decisions. In this step, we group together all
the explanations (and thus the instances) that contain the same set of
features, compute accuracy statistics on top of them, and use these
groups as a visual interactive summary of the decisions the model
makes. By visualizing the explanations and their accuracy the user
can get a sense of what are the major decisions the model makes and
how accurate they are (G2, G3).
Instance-level. The third step focuses on the analysis of a single
user-selected explanation and the instances it explains. Once an
interesting explanation has been found in the previous step, it is
often useful and necessary to drill-down to the individual instances
to observe how the data items contained in an explanation distributes
in the original data space. Being able to observe their actual data
values and the decisions the model enables experts in formulating
hypotheses about why the classifier fails to make correct decisions
with some instances. In other words, when it is possible to visually
compare the data values of instances that have the same explanation
but different outcomes, users can draw inferences on the root cause
of the diverging outcomes. Therefore, by visualizing single instances
the user can reason on how the model makes decisions and derive
potentially useful hypotheses about how they can be improved (G4).

These three steps are linked in a sequence by user-driven filter-
ing mechanisms. The user can select specific sets of values at the
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outcome-level and visualize them at the features-level. While ob-
serving the main set of decisions at the feature-level, she or he can
select specific explanations and inspect individual instances in the
instance-level interface.

It is important to stress the key role explanations play in the work-
flow. By computing the explanations and computing statistics on
top of them we can effectively provide a description of the main set
of decisions the model makes without having access to the internal
logic of the model. The relevant aspect of explanations is that they
compute a compact description of which features the model uses
to make local decisions for a subset of instances. For example, in
the medical data analysis explored in this work, where each patient
is described by the medications he or she received (features) and
the classifier predicts whether the patient will be admitted or not,
an explanation can identify a group of patients characterized by a
small set of medications; that is, the medications the classifier uses
to make its prediction.

4 Explanation Method

Using explanations, we intend to group data items from the perspec-
tive of the machine learning model being analyzed. In order to do
so without relying on a particular model, that is, treating the model
as black box, we can estimate which features were involved in its
decision making process. In our initial approach, we had explored
alternative methods for grouping the data by looking only at pre-
diction scores of the model [16]. However, we realized that those
methods mostly reflect the intrinsic structures of the data set instead
of the decision making process of the model. Therefore, in this work
we build explanations by finding the minimal amount of change
necessary to change the prediction of the analyzed model, specifi-
cally, a binary classifier. Also, contrary to our previous approach
of using explanations to detect only the commonly used features by
a model [30], here we focus on explanations as a way for experts
to diagnose correct or problematic model behavior and address the
goals G1, G2, and G3, that were outlined in Section 3.

Explanations are created using a trained model by creating syn-
thetic input values derived from observed data items revealing this
input-output relationship. The set of changes to the values that
swayed the outcome of the prediction is then called explanation e
for the given original data item:

min
e

L(v− e) , L(v)

where L is the label function with “positive” or “negative” as result
and v is the data item to be explained. In order to compute e, the
prediction function P of the classifier is used with a threshold t:

L(v) = P(v) > t

The output of P, the prediction score, is a number between 0 and
1 indicating the confidence of a classifier in the predicted outcome.
The threshold t is chosen to yield the most correctly predicted items
on the training data.

Prospector [17] and LIME [27] both propose algorithms that can
be used to create explanations. The metric used for minimizing e
depends on the explanation technique. Prospector assumes feature
independence and thus minimizes e by combining one-dimensional
impactful changes of the prediction score. LIME on the other hand
creates a local new simpler model by sampling the neighborhood
of the analyzed data item and extracts e from this transformed local
space. Those two methods aim to approximate minimal explanations
in real valued high-dimensional input data spaces.

In our case we are dealing with high-dimensional binary input
data. For most applications, like text analysis or movie recommen-
dation, binary input data is sparse, i.e., almost all feature values are
0 instead of 1. Therefore, binary data can also be interpreted as a

bag of features. That is, a data item can be treated as set of features
whose value is 1.

Martens and Provost [24] provide an algorithm for computing
minimal explanations for binary input data. As Prospector and LIME
only generate approximate explanations for data items we adopt and
extend this method instead. The method allows for only removing
features from the bag of features. This restriction comes from the
observation that allowing additions to the bag of features can “tone
out” the original item by adding unrelated features with high impact
on the prediction score.

The algorithm to generate explanations using this method consists
of successively removing features from the bag of features until the
prediction outcome changes. The order of the removal is determined
by the largest change in prediction score when removing a feature.
The set of features that are removed from the bag of features in order
to change the outcome of the prediction is then called an explanation
of the original data item.

One problem with the original algorithm is that it contains a
series of conditions that make it give up on explaining some of the
instances when these conditions are met. In our case however we
want to be able to provide a full picture of the data set and as a
consequence we want to create an explanation for every instance
provided in the data. For this purpose we decided to introduce a few
modifications to the original algorithm:

• The original algorithm enforces a maximum length of expla-
nations and declares an item as unexplainable if it fails to find
an explanation that is shorter than the limit. In our implemen-
tation we removed this restriction. The main consequence of
this modification is that sometimes the algorithm may produce
explanations that are very long and unintelligible. Those ex-
planations however are interesting because they can help us
detect and visualize edge cases which may reveal surprising
information. In addition, having many long explanations that
explain only a few data items can be an indicator of a highly
complex model with few similar instances or that the model is
overfitting as it is trying to memorize individual labels.

• The algorithm can run into plateaus where removing any fea-
ture does not change the prediction score. The original algo-
rithm gives up in this case. We circumvent this problem using
the following two-step strategy: in this case we select a feature
at random and let the algorithm work as usual. Once an ex-
planation has been computed, we follow-up with a “clean-up”
step removing features that do not contribute to a change of
the prediction in the end. This extra-step can be very computa-
tionally expensive if the input data is not sparse, however, it is
necessary to ensure that the resulting explanation is minimal.

• The original algorithm skips data items whose prediction out-
come never changes. As we use explanations as estimate of
which features were involved in the decision making process
of the model we assign the explanation of those cases to be the
original data item. That is, all features present in the original
item make up the explanation as all of them were necessary
for the model to compute the predicted label.

The explanation algorithm can take several hours to compute even
for small data sets depending on the sparseness of the data. This
requires the generation to be performed offline before analyzing a
model. In order to shorten the computation time we utilized caching
of partial explanation results in order to reduce the number of queries
to the machine learning model.

5 Visual Interface
Our proposed user interface1 consists of three different panels, each
corresponding to the different goals of our proposed workflow that

1https://github.com/nyuvis/explanation explorer
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Figure 2: The Statistical Summary View. (A) Histograms showing
the distribution of prediction scores. The direction of the bars indi-
cates the ground truth and their position relative to the threshold line
(at 0.531) indicates the predicted label. (B) The confusion matrix
shows the number of correct and incorrect predictions. (C) The ROC
curve shows the prediction quality.

we described in Section 3. By interacting with each panel and
navigating across these panels, experts can diagnose different aspects
of model behavior.

In the visualizations that are a part of our interface, the colors
orange and blue are used to show negative and positive prediction
quantities. A hatching pattern is used for quantities where those
predictions are incorrect according to the ground truth of the data.
In this section, we describe each panel according to the order of the
workflow: Statistical Summary View of the machine learning model,
the Explanation Explorer, and the Item Level Inspector.

5.1 Statistical Summary View

The purpose of this panel (Figure 2) is to address G1 by providing a
quick summary of the performance of a trained model that can help
detect shortcomings before proceeding with further analyses of the
model. The view consists of multiple components.

The histograms (Figure 2A) show the distribution of data items
over prediction scores. The chosen threshold is shown as vertical
line. Bars going up indicate the number of predicted positive labels
while bars going down show predicted negative labels as emphasized
by the color of the bars. The prediction score goes from 1 to 0 from
left to right to match the order of cells in the confusion matrix.
Likewise, bars at the bottom, left of the threshold, and at the top,
right of the threshold, depict incorrectly predicted data items as
indicated by their hatching pattern. Selecting a particular bar lets
the user navigate to the Explanation Explorer for inspecting items
that fall in the given range of prediction scores.

The confusion matrix (Figure 2B) splits data items by their ground
truth (vertical) and the predicted label (horizontal). The edge of the
matrix shows the sums of its columns and rows. The predicted
label depends on a threshold that divides prediction scores into
positive and negative. We choose the threshold to minimize incorrect
predictions (i.e., the threshold with the smallest number of false
positive and false negative predictions).

The ROC curve on the testing data (Figure 2C) shows the false
positive rate ( FP

FP+T N ) plotted against the true positive rate ( T P
T P+FN ).

The thresholds for those values are implicit in the plot. However,
the position for the chosen optimal threshold (as described above) is
indicated in the plot via two crossing lines.

The area under the ROC curve (AUC) is also shown for both the
testing and the training data set. An AUC of 1 indicates optimal
prediction while an AUC of 0.5 equals classification by flipping
a coin. Comparing the training AUC to the test AUC is a good
estimator of how well the given model generalizes the training data.
A very high training AUC with a much lower test AUC indicates
overfitting of the training data. In addition to the AUC the accuracy

of the model with the chosen threshold is also shown.

5.2 Explanation Explorer
The second panel, the Explanation Explorer (Figure 3), addresses
G2 and G3 by encoding a list of explanations based on the method
we described in Section 4. The explanations are representative of the
main model decisions and the associated statistics about explained
items provide insight into the accuracy of those decisions. Each row
in the list represents one subgroup of data items explained using a
single explanation set. The rows can be filtered based on different
criteria for user exploration which we describe below. The row on
top shows information for the full set of current data items.

The first column of the list shows this explanation (Figure 3E). In
order to make this information quickly readable we only show the
first three features of an explanation and indicate if there are more
features present by adding a marker, showing the number of remain-
ing features, on the right side of the feature names. Furthermore,
the feature descriptions are abbreviated in a way that each feature
takes up the same amount of space. With this the complexity of
an explanation i.e., the number of features used in an explanation,
can be seen at a glance. The full description of all features can be
seen in the tooltip when hovering over the features. The design
decision to show only up to three features stems from the fact that
only short explanations can be easily interpreted and having many
long explanations is usually a sign of problems with the classifier,
like overfitting, and in that case, the actual features involved are less
interesting.

The next column shows the relative distribution of predicted labels
of the explained subset of data items as stacked bars (Figure 3F). The
colors blue and orange are used to indicate a positive and negative
prediction respectively while a hatching pattern indicates incorrect
predictions. The actual numbers are shown in the bars as well.

The bars in the third column show the size of the subset relative to
the largest explanation subset of the current data items (Figure 3G).
The bars are split according to the distribution of the ground truth
labels. Two shades of gray are used to avoid confusion with distri-
butions of predicted labels. The total number of items in the subset
along with the number of positive items according to the ground
truth is written in the column as well.

The fourth column shows the odds ratio of the subset on a log-
arithmic scale (Figure 3H). Whiskers indicate its confidence inter-
val. Odds ratio is a popular metric for determining effectiveness
in evidence based medicine and clinical trials. It is computed by
comparing the subset explained by the given explanation with the
full set of current data items. This way we can detect whether an
explanation describes a consistent subset of instances or if the subset
appears like a random sample. With this the odds ratio is:

pe/ne

pt/nt

where pe and ne is the ratio of positive and negative items respec-
tively in the explanation subset and pt and nt is the ratio of those
items in the remaining data set. The confidence interval of the odds
ratio is then computed as:

exp
(
log(odds ratio) ± 1.96

√
P−1

e + N−1
e + P−1

t + N−1
t

)
where P and N are the actual number of positive and negative items
in the explanation subset e and the remaining data t.

An odds ratio larger than one indicates that the explained subset is
significantly positive with respect to the rest of the current data items.
Likewise, a value smaller than one indicates that it is significantly
negative. However, if the confidence interval crosses one the subset
is not significantly different. To highlight this important special case
the odds ratio and the whiskers are drawn in red in this case.
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Figure 3: In the Explanation Explorer each row represents a group of data items explained by a set of features (E). An indicator is shown for
explanations longer than 3 features. Column (F) shows the distribution of true / false positive / negative data items within the group. Colors
show the predicted label (“blue” for positive and “orange” for negative) and a hatching pattern indicates incorrect predictions. Column (G)
shows the number of items captured by the explanation. The bars are relative to the size of the largest explanation. Column (H) shows the
odds ratio of the group on a logarithmic scale. Whiskers show the confidence interval. The arrows on the right (I) navigate to the Item Level
Inspector focusing on the given explanation. The controls of the Explanation Explorer are shown on the left. The first entry of the list of filtered
data items (B) represents the full dataset and following entries show sizes after filter steps are applied. The “+” creates a new filter according to
the current selection of explanations. Explanations can be selected satisfying a condition (C) or by searching for features in the search box (A).
The sort order of explanations is defined by the list at the bottom (D).

At the right end of each row is a button (Figure 3I) to inspect
the explained subset more closely in the Item Level Inspector as
described in Section 5.3.

The rows shown by the Explanation Explorer can be reordered
as well as filtered. As shown in Figure 3, the panel features various
controls on the left hand side to accomplish those operations . Fil-
tering works by first selecting affected rows (either by clicking on a
row or by using widgets on the left) and then clicking on the “+” in
the list of filtered data items (Figure 3B) Each new filtering of data
items creates a new entry in this list showing the current number of
data items. By selecting entries higher up in the list the user can go
back to this filter. The topmost entry always contains all data items
of the entire data set.

Besides getting a filter for a given prediction score range from
the Statistical Summary View there are two ways of filtering items:
searching and conditioning. The search field (Figure 3A) can be used
to select rows whose explanation matches the query specified by the
user. While typing or using arrow keys suggestions for feature names
are shown in a dropdown list. Those suggestions are sorted by how
often that feature appears in explanations and how closely it matches
the already specified query. The query can contain multiple features
that need to appear in the explanation separated by a comma “,”. The
conditioning widget (Figure 3C) allows to filter by quantities.

As shown in Figure 3D, different metrics can be used to filter or
reorder the list of explanations. A good use for the conditioning filter
is to remove explanations that only explain a small subset of the data
when looking for unusual or significant subsets. The explanation
rows can also be reordered using these metrics. The widget contains

a list that shows the order in which explanations get sorted. Each
element has a symbol next to it indicating the sort direction which
can be clicked on to change the sort direction. Selecting an element
brings it to the top of the list.

The metrics used for reordering are the same as those used for
conditioning with the additional option of lexicographical sorting by
using the feature names of the explanations. Common metrics to use
for sorting or reordering, besides total amount of items, are “uncer-
tainty” and “odds ratio”. “Uncertainty” (the closeness of the odds
ratio to one: −| log(OR)|) provides a view into problematic areas of
the machine learning model sometimes even unpredictable items
when items with the same value configuration have different ground
truth labels. “Odds ratio”, based on the computation mentioned
earlier, points to especially strong predictive areas of the machine
learning model.

5.3 Item Level Inspector

The third panel (Figure 4) allows for a more granular inspection of
items explained by a given explanation set. This addresses G4 by
providing hints about the extent to which a model can be improved
and if changing the data is necessary for that purpose. The panel
consists of a matrix showing the actual feature vectors of the given
items. Each row represents a unique feature vector pattern while
columns represent features. Rows can be expanded so that each
row represents exactly one item. Cells in the matrix are filled if the
corresponding feature vector contains the feature represented by the
column. As rows are aggregates of multiple data items, the number
of items is shown as a bar with the number indicated on the left side
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of the matrix. The feature names for the columns are shown slanted
on top of the matrix. Bars behind the names show how often the
feature is present. The very first column in the matrix shows the
predicted label (using the colors blue and orange) and its correctness
(hatching pattern for incorrect predictions) of the given data item.
Items with the same feature vector configuration but different labels
are shown in different rows.

Rows and columns can be reordered using different options, simi-
lar to Explanation Explorer. One of the important reordering criteria
for rows is the feature order, where items are ordered by seeing
whether the first feature of the columns is present and then if the
next feature is present, and is repeated for all the columns. An im-
portant reordering criteria for the columns is the relative feature
importance: the gini feature importance with respect to the current
subset of data items and their predicted labels and correctness.

The combination of the “feature order” and the “relative feature
importance” criteria provide a particularly interesting view on the
subset of data items. Using this order, the most discriminating
features with respect to predicted and actual labels are shown first.
Since the rows are ordered by those features, a user can follow those
orderings to see how to separate different predicted and actual labels.
This guidance of the user to relevant associations in the item subset
are useful for quickly understanding the raw data. Note that it is
sometimes possible to fully separate data items this way. However,
utilizing this separation would be overfitting on the validation set.
Furthermore, the opposite situation with exact same feature vectors
but with different labels that cannot be separated exists as well.

Some features are not discriminative in terms of “relative feature
importance”. They can be ignored to simplify the matrix view.

6 Case Study: Expert Analysis of Medical Outcome

The proposed workflow described above stem from a one year col-
laboration with a machine learning expert and a medical doctor from
the NYU Langone Medical Center, both co-authors of this paper.
The medical machine learning team at the medical center works in
tight collaboration with doctors and hospital management to derive
novel methods to automate medical procedures, provide diagnos-
tics support, improve efficiency and gain novel insights on medical
procedures and processes.
Domain Problem Description. Our collaboration focused on the
analysis and improvement of models built to optimize processing
times in the emergency department of the hospital. The crucial
decision here is whether a patient coming to the emergency room
will end up being admitted to the hospital or sent home. In the
case of a patient being admitted to the hospital, a bed has to be
prepared for the patient which results in a 2-hour waiting period
where the patient occupies a bed in the emergency room preventing
other patients from being processed. If the waiting time can be
reduced by knowing early if a given patient will be admitted, the
throughput of the emergency room can be increased.

The idea to reduce this wait time is to use predictive modeling at
the earliest time possible so that an admitted patient can be moved
sooner. The amount of data available to make this decision however
is very limited. When first presented with a patient the emergency
doctor orders medication for treating, stabilizing, or preparing the pa-
tient for procedures or tests and eventually will conclude a diagnosis
and decide whether the patient is in need of admission.

As medication is the earliest recorded indicator of the admission
result and also is recorded before lengthy procedures or tests it is the
most promising candidate for a predictive model. The main machine
learning task is therefore to verify whether a viable model can be
built by using exclusively the limited information available.

Other work has been done in this regard, however, using input
features that are not readily available (e.g., information from medical
notes that are written after the fact) or are hospital specific (e.g.,
mode of arrival, triage score) [5, 7, 13].

During our collaboration the team of visualization experts met
with the medical team regularly to understand the problem and the
data, and to develop collaboratively visual analytics solutions for
model diagnostics and interpretation. The workflow we described
in the paper resulted from numerous iterations over the methods
used to derive information from the model and the methods used to
enable their interactive visual exploration.

In this section, we describe one particular example that showcases
the capabilities of the proposed method and provides insights on how
it is able to support diagnostic analysis of complex machine learning
model used in a relevant real-world scenario. In the following, the
term “we” is used to refer to the team of visual analytic experts, a
machine learning expert, and a medical doctor, who collaboratively
worked on the usage scenarios described below.
Selecting Initial Data and Model (G1). We initially gathered a
dataset of 5980 patients (28% admitted) with binary vectors indicat-
ing medications given to the patient. Those patients were randomly
split into a training (1196 patients with 30% admitted) and test
(4784 patients with 27% admitted) dataset. We then computed sev-
eral models and tweaked them using mostly the Statistical Summary
View and model specific approaches. This initial dataset contains
398 unique medications. The table below shows a summary of the
models we trained and their performance.

Model Training Test AUC
Gaussian Naı̈ve Bayes (GNB) [33] 0.58 0.52
Logistic Regression (LR) [32] 0.85 0.79
Random Forest (RF) [6] 0.88 0.79
Multi Layer Perceptron (MLP) [14] 0.85 0.80

As we can see most of the models achieve similar performance
on the test data. In the following we focus exclusively on the Multi
Layer Perceptron model but the same kind of analysis can be per-

Features

Ite
m

s

Predicted label
(a)  Inspection of “Diatrizoate Meglumine” and (b) “Sodium Chloride”.

Frequency 
of an item

Frequency 
of a feature

Figure 4: The Item Level Inspector showing a matrix of data items
as rows and features as columns for the explanations Diatrizoate
Meglumine and Sodium Chloride in the initial data set of the case
study (Section 6). Rows group identical instances together and show
the count on the left side. Features are sorted by “relative feature
importance” showing from left to right how labels can be separated.
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(a) Ordered by “total” size showing the most common explanations. (b) Ordered by “odds ratio” showing significantly positive explanations.

(c) Ordered by reverse “odds ratio” showing significantly negative explanations. (d) Ordered by “uncertainty” showing item subsets whose predictions are not significant.

Figure 5: Showing different orders in the Explanation Explorer for addressing the goals (G2 & G3) in the case study (Section 6). The initial
dataset is filtered for explanations with > 20 data items.

formed on any of the other models with similar results for the models
with similar predictive power.
Exploring model decisions and spotting problems (G2 & G3).
To start the analysis we compute all the explanations and visualize
them in the Explanation Explorer shown in Figure 5a, which by
default is sorted by frequency of explanations. The first thing we
notice is that Sodium Chloride is the most common explanation and
that it contains a considerable number of misclassified instances.

Sodium Chloride represents an intravenous therapy, the infusion
of a liquid directly into a vein. As part of a medication order it is
used to increase the effectiveness and response time of a drug and
also to apply medication if a patient is unconscious. Used by itself it
has the only purpose of hydrating a patient.

The distribution for the explanation shows both positive and neg-
ative predicted outcomes, which may seem paradoxical at first. This
result however stems from the fact that the context of an explana-
tion (that is, whether features co-occur with the features used in
the explanation; note that certain co-occurring features form other
explanations as they have a direct influence on the outcome) matters
in terms of which outcome it explains.

The Item Level Inspector can help us clarify this situation. We can
see that hospital admission is the predicted outcome when Sodium
Chloride appears together with other drugs, whereas when this is
the only medication the patient received, the patient is predicted to
get sent home (Figure 4b).

Looking at the odds ratio value for this explanation we also
notice that this subset is not significantly predictive and that the
misclassification rate is high (weak signal). Note that even though
Sodium Chloride is the most common explanation it cannot be used
as a significant indicator of the outcome. From a medical perspective
this makes sense as Sodium Chloride is mostly used as supporting
medication, however, the machine learning model still assigned
predictive power to it. This indicates that the data did not contain
a strong enough signal to make a more informed decision in those
cases.

Another common explanation is Ibuprofen a pain relieving drug.
It is predictive for non-admissions which is likely due to patients
with pain symptoms that turned out to be benign. The odds ratio
indicates a significant relation to the outcome. On the other hand
Vancomycin, an antibiotic used for treating infections, is significantly
linked to hospital admission which is expected.

After filtering out uncommon explanations (< 20 explained items)
ordering the explanations by “odds ratio” reveals significant indica-

tors for admission and non-admission (Figure 5b). In addition to the
already discovered significant explanations we can see Furosemide,
a drug for treating congestive heart failure, as being strongly indica-
tive for admission and certain drugs in combination with Sodium
Chloride strongly linked to non-admission (Figure 5c). The drugs
in question are pain-relievers (Morphine and Ketorolac) and drugs
to help with stomach problems (Ondansetron and Metoclopramide).
Note that using an IV (Sodium Chloride) for stomach related prob-
lems helps both hydrate the patient and ensures the intake of the
medication (after e.g., vomiting).
Finding Weaknesses (G4). Ordering explanations by “uncertainty”
(Figure 5d) shows explanations whose predictions are not significant.
This is often the case when it is impossible to correctly predict a set
of identical instances that have a contradicting ground truth.

The first two explanations Ipratropium Bromide, Albuterol Sulfate
(medication for treating chronic obstructive pulmonary disease and
asthma, lung diseases that can have chronic and acute symptoms the
latter of which requires immediate attention) and Sodium Chloride,
Ondansetron, Morphine are both predicted negative. However, the
ground truth of those subset has the same distribution as the overall
dataset (thus an odds ratio close to 1). This means the true admission
rate of those two subsets is independent of the medication in question
as the admission rate matches the admission rate of the dataset. If
more patients would be observed in the data this rate would likely
stay the same. Through Item Level Inspector we can see that the
features of the explanations are the only features in the respective
data items. No further information is provided that could help
swaying those subsets in a definite direction of admission or non-
admission.

Another problematic drug is Diatrizoate Meglumine which has a
high misclassification rate and an odds ratio close to 1. The drug is a
contrast medium that is given in preparation of PET (positron emis-
sion tomography) or CT (computerized tomography) scans. As the
outcome of the scan is not known it cannot be determined whether
the test was positive for the hypothesis made by the attending physi-
cian. Furthermore, even the presence of other drugs is no indicator
for admission as it only shows the doctor’s risk assessment before
the test was ordered and therefore does not include whether the
doctor’s assumption was correct. Note, that Figure 4a shows how
outcomes can be better separated using available features. However,
doing so would result in overfitting on the validation data set which
should be avoided in any case.

Faced with this revelation we explored how we could provide
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more information to reduce those ambiguities. In order to properly
deal with cases like Ipratropium Bromide and Albuterol Sulfate
or Sodium Chloride and Diatrizoate Meglumine more information
is needed. Through domain expertise we can reason about the
underlying shortcomings of the current dataset, e.g., the nature of
the limitations of Diatrizoate Meglumin. In order to overcome those
limitations we need to include additional information in our dataset.
For example, including information about the final diagnosis of a
patient resolves the ambiguities of patients explained by Diatrizoate
Meglumin and other problematic explanations mentioned above, and
likely improves the overall quality of the prediction2. However, this
also moves the time of the prediction closer to the point in time when
the actual decision, whether the patient is admitted to the hospital,
is made thus reducing the time-gain for preparing a bed in case of
admission.
Changing Data and Model. In the following we describe how
we could improve the prediction task by including additional in-
formation to our dataset. This additional information, i.e. final
diagnoses, was added to overcome limitations posed by medications
not strongly linked to an outcome, as described above. In order
to include those diagnosis features in the data we had to capture
new data which also allowed for capturing a bigger dataset. The
new dataset contains 154580 patients (20% admitted) and was ran-
domly split into a training (30916 patients with 20% admitted) and
test (123664 patients with 20% admitted) dataset. It contains 1709
unique medications and 15422 unique diagnoses.

The best results of different models on the new dataset are:

no diagnoses incl. diagnoses
Model Training Test AUC Training Test AUC
GNB 0.51 0.49 0.75 0.66
LR 0.71 0.67 0.93 0.88
RF 0.69 0.68 0.98 0.83
MLP 0.71 0.68 0.95 0.88

Maximum values are chosen using digits not shown.

Again we are focusing solely on the Multi Layer Perceptron
model for further analyses (even though similar results can be found
with the other equally well performing models). In order to compare
our new data to the previous dataset we first created models that do
not utilize the newly added diagnoses. However, the resulting AUC
is much lower than for the initial data. Looking at the Statistical
Summary View reveals a strong concentration of data points at a
specific prediction score. Focusing on this prediction score in the
Explanation Explorer (Figure 6a) shows that it corresponds to the
62776 patients that did not receive any medication at all. This
configuration predicts non-admission as it is more likely to get
sent home when not receiving any medication. The unusual large
number of such cases (∼50%), however, hints at a possible capturing
error which would also explain the 11394 cases where patients were
admitted. This failure rate severely affects the machine learning
models. For comparison the next largest explanation of Ibuprofen
in the new dataset consists only of 2011 patients. In fact patients
without medication were not captured in the original dataset and
removing them from the new dataset increases the best train / test
AUC to 0.83 / 0.80 similar to the original dataset. For further analysis
we include patients without medication. Utilizing diagnoses in the
models strongly increase the possible AUC.
How Did Diagnoses Features Change the Model? The Explana-
tion Explorer of the best model utilizing diagnoses features, Multi
Layer Perceptron, can be seen in Figure 6b. Noticeably, almost
all explanations now consist of diagnoses. This also means that
medication features have now become almost irrelevant except for
medications, like Ibuprofen and Vancomycin, that were strong in-
dicators before. The most significant diagnoses, using odds ratio,

2Including other information, such as, mode of arrival, gender, or age,
might improve accuracy but would not solve the issues mentioned above.

for admission are Sepsis, Sepsis due to unidentified organism, and
Small Bowel Obstruction. Diagnoses that require antibiotics (e.g.,
Vancomycin) and pain medication (e.g., Ibuprofen) respectively. Con-
tradictory or insignificant medications, like Diatrizoate Meglumine
or Ipratropium Bromide and Albuterol Sulfate, do not show up any-
more as they can be more effectively replaced by their diagnoses.
The largest explanation, with 2619 patients, is Unspecified which,
after some research, turns out to be due to a policy change before
which doctors were allowed to omit a diagnosis if the patient got
admitted to the hospital. Why only 2105 (∼80%) were actually
admitted to the hospital remains unclear.
Diagnostic Insights. By adding diagnoses to the dataset a strong
increase in predictive quality was achieved. However, seeing that
diagnoses effectively replace medication in their predictive power
suggests that the “labels are leaking”. That is, since doctors make
the decision of whether to admit a patient at the time of the final
diagnosis there is a strong correlation between the label and the fea-
tures. This is an undesired effect as the model is not predicting the
outcome anymore but merely building an approximate lookup table
for diagnosis admission rates. If the model would have kept using
medication and only consulted diagnoses for ambiguous cases the
usability of the model would have been improved due to diagnoses.
This is not the case. Despite its lower objective quality the model
using only medications as input emerged as the more practically
useful model. Since experts know about the strengths and weak-
nesses of the model, they can distinguish between confident and
ambiguous cases early and decide whether to accept the prediction
or wait for the final decision made by the doctor. This demonstrates
that a statistically weaker model can be more useful in practice.

7 Discussion

Through our case study of patient visits, we have shown that by
aggregating model decisions through explanations, we are able to
make sense of a large number of interesting decisions: some ex-
pected and some unexpected; some useful and some less useful; and
finally some leading to actionable knowledge and some requiring
more introspection on the part of domain experts. This level of
transparency is necessary for experts and data scientists to built trust
in a model and, especially, generate ideas on how it can be improved.

In our interactions we have also noticed the usefulness of using
explanations as the main method to make sense of model decisions.
As long as the features used for the problem can be interpreted by
the user, the concepts expressed in the visualization are easy to grasp
and learn. During our collaboration we have experimented with
other structures such as trees and rules but we often found that these
were either too complicated or hard to use for modeling complex
phenomena reliably and succinctly.

As we observed in the case study presented in Section 6 it is
important to understand which decisions a model is most certain
about and also find the decisions about which it is uncertain. When
issues are detected there are several possibilities: training a better
model, finding better data, introducing new and more informative
features, or deciding that the model can make decisions only for
the subset of cases the experts are most certain about. One possible
outcome is also deciding that the problem is simply too complex
and that expert judgment is, at the current stage, preferable.

From the experience we gained in this project we drew a number
of important lessons, which we outline below.
Lessons Learned. In our work we noticed that many of the issues
we spot in our analysis cannot be corrected simply by training a
better model with the same data, but need some major redesign of
the feature space and a careful analysis of the biases contained in
the data. In turn, while diagnosing one or more models built on one
data set and set of features can bring useful knowledge, ultimately
solutions often have to come from better data engineering. We
believe visual analytics can and should play a major role in this
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(a) The second dataset without diagnoses ordered by “total” size. (b) The second dataset using diagnoses ordered by “odds ratio”.

Figure 6: Showing the second dataset of the case study (Section 6) with and without using diagnoses features in the Explanation Explorer.

regards and find ways to support analysts explore alternative data
and feature spaces. This is even more relevant when we observe
that visual analytics systems and research tends to focus on one
single data set and one single set of features. Focusing on supporting
external changes of data and models offers many challenges and
opportunities for visual analytics.

Another important observation pertains to the practical value
of developing a visual validation system separated from and not
interfering with the existing modeling pipeline. From Figure 1 it may
seem natural to envision visual analytics methods able to support the
user in closing the loop and apply direct modifications to the model
in order to improve it. This is the type of solution advocated by the
interactive machine-learning paradigm [2], in which the user can
directly instruct the model on how to improve its decisions.

However, through our collaboration, we realized that modelers
and experts often have very specific tools they use for model de-
velopment and refinement and it is often hard to intervene on their
familiar processes and infrastructure. A much more viable solu-
tion is to develop a methodology that does not require a substantial
modification of their existing workflow and infrastructure.

We also observe that while this type of paradigm is useful to
provide better examples to the model, it cannot solve the data acqui-
sition shortcomings we have outlined above. Fixing these problems
requires domain experts to rethink the whole approach of the stated
machine learning problem. For example, improving the input data
might require to capture new features from different sources or re-
thinking of pre-processing steps. It seems important to figure out in
future research which particular settings are the most appropriate for
the “out of the loop” solution we proposed here and which are more
amenable to the interactive machine learning paradigm.

A final observation is how the process of validating the model
often leads to generating insights that pertain more to the reality
being modelled than the model itself. In several occasion, our col-
laborators ended up spotting potential issues with how their patients
are handled in the hospital. Typical examples include situations in
which some patients are discharged and at the same time are given
medications that represent a strong signal for a serious condition for
the doctor. These kind of mismatches between the mental model of
the doctor and the reality modeled is a potential source of process
improvement and can be used to take important actions.

In relation to this last observation, it seems interesting to reflect
on how visual analytics can further leverage the power of modeling
for exploratory data analysis and data sense making. While many
systems focus on direct visualization of raw data as overview, there
seem to be relevant opportunities on using modeling as a preparatory
step so that the resulting visualization contains more signals about
hidden associations among features and items in the data.
Limitations. The workflow and its implementation we described
work exclusively with sparse binary data and binary classification.
Although, explanation generation can be extended to other input
data types the visual representation of those explanations has to be
redesigned in order to accommodate other data types. Similarly,
handling classification for more than two classes is also not trivial.

Our method works only with interpretable features, that is, fea-
tures have a direct connection to a reality the user can easily under-

stand. Many relevant machine learning problems however require
the use of highly non-interpretable features. Classification of im-
ages, audio, and video, is a classic example of this case. In these
settings the single features used by the model do not have any direct
interpretation the user can directly use for model understanding.

Our solution works best with analyzing one single model at a
time but it does not provide direct support for model comparison.
In many practical cases modelers like to train multiple models and
then figure out how they compare. While in practice most of these
comparisons are currently performed on statistical aggregations, it
would be useful to develop methods able to compare multiple models
in terms of the decisions they make and how they differ. This is even
more important in those cases in which models display a similar
performance but actually differ in the way the decisions they make.

Merging same explanations with different outcomes, like in the
case of Sodium Chloride, was done to make a user aware of this case.
However, merging penalizes the odds ratio. In the cases presented
in this paper the odds ratio did not get affected as the correctness for
both outcomes were similar. If, for example, the positive prediction
were always right but the negative prediction equivalent to a random
guess both cases would be underrepresented by the odds ratio.

With respect to scalability, neither the total number of features
nor the total number of instances is limiting, since only a subset of
available features appear in explanations and many instances are
aggregated. However, it can happen that explanations are consis-
tently long or do not aggregate well. This is mostly dependent on
the model. Long explanations can be a sign of overfitting or a highly
complex model with few similar instances. Explanations in the latter
case are less interpretable which demands for a strategy to simplify
or shorten explanations.

8 Conclusion & FutureWork

We demonstrated how visual explanations can be effectively lever-
aged by data scientists and medical experts for diagnosing model
decisions and for ultimately making informed judgment about as-
sociations among medications and patients’ diagnoses. We will
extend our method to non-binary data and multi-class problems.
We will also extend our solution for letting data scientists compare
explanations from multiple models and leverage our model-agnostic
workflow for making informed choices about choosing machine
learning models in real-world application scenarios.
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