
Springer Nature 2021 LATEX template

TRIVEA: Transparent Ranking

Interpretation using Visual Explanation of

Black-Box Algorithmic Rankers

Jun Yuan1, Kaustav Bhattacharjee1, Akm Zahirul Islam2

and Aritra Dasgupta2*

1Department of Informatics, New Jersey Institute of Technology,
USA .

2*Department of Data Science, New Jersey Institute of
Technology, USA .

*Corresponding author(s). E-mail(s): aritra.dasgupta@njit.edu;
Contributing authors: jy448@njit.edu; kb526@njit.edu;

akm.islam@njit.edu;

Abstract

Ranking schemes drive many real-world decisions, like, where to study,
whom to hire, what to buy, etc. Many of these decisions often come
with high consequences. For example, a university can be deemed less
prestigious if not featured in a top-k list, and consumers might not
even explore products that do not get recommended to buyers. At the
heart of most of these decisions are opaque ranking schemes, which
dictate the ordering of data entities, but their internal logic is inacces-
sible or proprietary. Drawing inferences about the ranking differences
is like a guessing game to the stakeholders, like, the rankees (i.e., the
entities who are ranked, like product companies) and the decision-
makers (i.e., who use the rankings, like buyers). In this paper, we aim
to enable transparency in ranking interpretation by using algorithmic
rankers that learn from available data and by enabling human reason-
ing about the learned ranking differences using explainable AI (XAI)
methods. To realize this aim, we leverage the exploration-explanation
paradigm of human-data interaction to let human stakeholders explore
subsets and groupings of complex multi-attribute ranking data using
visual explanations of model fit and attribute influence on rankings. We
realize this explanation paradigm for transparent ranking interpretation
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in TRIVEA, a visual analytic system that is fueled by: i) visualizations
of model fit derived from algorithmic rankers that learn the associa-
tions between attributes and rankings from available data and ii) visual
explanations derived from XAI methods that help abstract important
patterns, like, the relative influence of attributes in different ranking
ranges. Using TRIVEA, end users not trained in data science have
the agency to transparently reason about the global and local behav-
ior of the rankings without the need to open black-box ranking models
and develop confidence in the resulting attribute-based inferences. We
demonstrate the efficacy of TRIVEA using multiple usage scenarios
and subjective feedback from researchers with diverse domain expertise.

Keywords: Visual Analytics, Learning-to-Rank, Explainable ML, Ranking

1 Introduction

Rankings are convenient heuristics for the human mind to make real-world
choices. What we eat, shop, watch, study, etc. – rank-ordered lists of data
entities, like restaurants, products, and universities, ubiquitously guide those
decisions. However, many of these ranking schemes are often proprietary and
inaccessible, yet, they have high consequences. For example, a university that
is not on the top-k list can be deemed as less prestigious; a product that is
not recommended to buyers can lose substantial amounts in revenue; a job
candidate who does not feature among the top applicants would not objectively
know how to improve their chances relative to an applicant pool. From the
perspective of stakeholders, like, data subjects who are ranked (henceforth,
termed as rankees) or decision-makers, it is often a guessing game for them to
interpret the logic behind the ranking information that matters to them.

Such inaccessibility and lack of transparency are ultimately detrimental
to creating equitable socio-technical systems [1] where proprietary ranking
schemes could be questionable yet, hold disproportionate power over stake-
holders. Our work addresses this problem by conceptualizing an analytical
workflow (Figure 1) that combines machine-learning explanations with expres-
sive visualizations for making ranking schemes interpretable and actionable to
different stakeholders. We learn a model by using the approach of supervised
learning: training learning-to-rank (LTR) algorithms on publicly available
ranking data. Then we use explanations of learned rankings to express asso-
ciations between rank positions and attribute values. The learned rankings
derived through modeling thus serve as the means to an end of discover-
ing the signals in high-dimensional data spaces. These signals, capturing the
attribute influence of rankings, need to be communicated effectively to end
users. As opposed to score-based multi-attribute rankings, the challenge here
is to express the learned scoring function faithfully and clearly. A concise
mathematical formula may fail to capture and communicate variance in local
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data neighborhoods. We address this interpretability problem by using model-
agnostic local explanations [2] originally designed for classifiers and adapt them
to the problem of explaining learned rankings. We leverage the trained mod-
els and their computed measures of fit to explain the models’ local behaviors
using TRIVEA (Figure 1). Transparency is achieved by leveraging visualiza-
tions that help end users generate attribute-focused, post hoc inferences [3]
about local ranking neighborhoods.

We enable user-initiated exploration of model explanations by designing
and developing TRIVEA, a visual analytic system that facilitates linked explo-
ration of the goodness of fit of the models and local explanations. TRIVEA
ensures that end users have the agency [4, 5] to reason about rankings with-
out the need to open the machine-learning black box and understand how
attributes contribute to the differences between high and low-ranked entities.
We conceptualized and developed the analytical and visualization components
of TRIVEA (Figure 1) in collaboration with researchers in machine learning,
human-computer interaction, and domain sciences, such as cyber security and
energy, where trust-augmented interpretation of learned rankings are a key
focus area. Using TRIVEA, rankees and decision-makers can develop confidence
in the model outcomes and build a mental model about the reasoning behind
ranking differences across data subsets of interest by probing the explanations.

As part of the conceptualization, design, and development of TRIVEA, we
make three key contributions in this paper: i) a principled analytical abstrac-
tion for modeling ranking labels from attributes and adopting black-box model
explanation methods such as LIME for enabling the interpretability of local
model behavior. ii) design of expressive visualizations that help express model
fit together with explanations comprising significant correlations among essen-
tial attributes and rankings. iii) development of a web-based interactive system
for post hoc analysis of model outcomes and explanations, the efficacy of
which is demonstrated through usage scenarios and subjective feedback from
a diverse group of domain experts.

2 Related Work

We discuss the related work in the context of visual analytic techniques for
exploring rankings and those for post hoc model explanations.

2.1 Visual Analytic Techniques for Exploring Rankings

Ranking is a convenient abstraction for human observers to quickly identify
data items that can be classified into ”good” or ”bad” categories. Several
visualization techniques have been proposed as a cognitive aid for navigating
high-dimensional data spaces [6, 7], constructing ranking scores [8, 9], and also
understanding changing ranking behavior across items or over time [10]. Seo
and Shneiderman proposed a rank-by-feature framework where ordered bars
were used to guide users’ attention toward high or low-ranked data items,
along with a summary ranking score [6]. Shi et al. used a combination of
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Fig. 1 We address the socio-technical problem of proprietary, inaccessible
ranking schemes by using supervised learning-to-rank models that learn from published
rankings and available data. The learned attribute-ranking associations are communicated
to end users, like rankees and decisionmakers, using a visual analytic system, TRIVEA, that
combines the goodness of model fit measures, XAI methods, and a set of interactive visual-
izations. Using TRIVEA, rankees can generate informed, post hoc inferences about improving
their rankings and decision-makers can carefully compare and contrast their choices against
competing alternatives.

Themeriver [11] and glyph-based design for showing ranking changes over
time [10], focused on the goal of scaling visualization to thousands of items.
A similar goal was achieved by Miranda et al., who proposed a data cube-
based abstraction for efficient exploration of top-ranked data objects [12]. For
understanding score-based rankers, LineUp [9] uses a combination of stacked
bar charts and interactive user assignment of weights to help users, such as
university students, decide which universities could be a better choice based
on their preferences. In all these cases, the ranking outcome is a product of
human feedback or a pre-computed combination of weights with which a user
can interact. In such cases, the logic of the algorithmic ranker(i.e., the scoring
function) is fully accessible to the ranking users.

We focus on problems where the ranking logic or scheme is inaccessible.
In that case, our approach is to build algorithmic rankers that model the
association between attributes and rankings. Therefore, there is also a need to
communicate the goodness of fit of these models so that end users can rely on
them to explain the learned rankings.

Machine learning approaches for modeling rankings have been used in
Podium [13], which takes the user’s preference of a few pairwise comparisons as
training data to generate a ranking for the entire list using RankingSVM [14].
Podium allows users to provide a few comparisons of higher or lower-rank
candidates and interactively learns the user-generated ranking by modeling
a small amount of user input. In contrast, we take a supervised learning
approach, allowing the algorithms to model the entire ranking using ground
truth data from published rankings (e.g., university ranking from the previous
year). We use the goodness of fit measures and visualizations that communi-
cate if learned rankings are reliable. These learned rankings ultimately serve
as a means to generate post hoc inferences from visual explanations that help
end users interpret attribute influence on rank positions.
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2.2 Visualization for Post Hoc Model Explanation

We use explanation methods for black-box interpretation of machine learning
models, specifically, learning-to-rank models. We use visualization techniques
to interpret and explore the associations among data inputs and ranker out-
comes. Several researchers have explored this space where black-box methods
have been used for eliciting particular responses from a model [15–19] from an
end user’s perspective or diagnosing the accuracy of classifiers [20–22] from a
model developer’s perspective. One of the key contributions of our work is to
adopt explanation methods like LIME [23], originally developed for classifiers,
to communicate explanations about learned rankings.

However, the output from XAI methods is limited to what machine can
produce and perceive the model behavior, which may not originate from a
human-centered design. We provide users the agency to create alternative
groupings and observe data attribute signatures that serve as the explana-
tion for a group of ranked items. As observed by Chan et al. [18], although
model interpretation at the individual level is useful, there are several visual
analytic challenges for communicating group signatures. It is crucial to deter-
mine an aggregation scheme that is reasonable for tasks and decision-makers.
Therefore, we designed a flexible and intuitive aggregation for local ranges
based on the attribute’s average importance and dynamic visual anchoring for
aggregating explanations from multiple rankers.

For achieving these tasks, we use visual comparison methods for aiding in
the navigation of ranker outputs, which has been identified as a key gap in the
literature [24]. Gleicher [25] considered the relationship between the compari-
son target and the action, the challenges under scalability and complexity, and
the visual strategies to solve the challenges that were applied for the climate
model evaluation [26]. By using a combination of visual cues and animation-
based interaction in TRIVEA, we communicate how rankings are affected by
changes in attribute importance levels.

3 Analytical Abstraction

A rank designer creates the ranking with attributes they consider important
and the formula they consider reasonable. The designer publishes the ranking
and often only some attribute data and the formula.

Despite the need for rank designers to publish all data and formulas for
total transparency, for a plethora of published rankings, the ranking schemes
are proprietary and hence, inaccessible to the public. However, transparency
can be increased [27] by modeling the ranking with accessible attribute data
and enabling inference generation using visualizations to communicate the
modeled associations.

In this section, we discuss the rationale of each step in our analytical
workflow (Figure 1) that helps achieve such transparency.

3.1 Problem Formulation
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We define the following notations to formulate the problem. The input data
of an algorithmic ranker is a matrix X with n rows and p columns. A set of n
candidates or items to be ranked (whom we term as rankees) are described with
a collection of p features or attributes {Xj}, j = 1, 2, · · · , p. For a candidate i,
its attribute values are represented as a row vector Xi = [Xi1, Xi2, · · · , Xip].
An algorithmic ranker consists of a scoring formula f(·) and a ranking formula
r(·). f(·) receives X as input, and outputs a score vector s. r(·) receives s
as input, and outputs the rank vector or ranking τ . The score and ranking
for a candidate i are represented as si and τi. The explanation about the
attribute importance of candidate i in ranking τ is denoted as E(i, τ,X).
We purposely do not define E based only on τi and Xi since even a single
candidate’s explanation is dependent on the entire ranking and attribute input.
In this work, we consider f(·) inaccessible, and we can only reverse-engineer

or learn f(·) from X and τ . The result of such reverse engineering is f̂(·).
According to different methods of reverse engineering, we may obtain multiple
f̂(·)l and proxy ranking τ̂l, l = 1, 2, · · · ,m. Candidate i’s explanation based on

f̂(·)l is denoted as Ê(i, τ̂ , X)l. We want to highlight that f̂ is not technically
learning the scoring function f since we only have access to τ but not the
scoring output s. Hence, f̂ mimics the mixed effect of the scoring function
f and ranking function r together. We identify the following questions that
ranking users might ask to motivate our proposed analytical abstraction: Q1:
Which attributes have a strong influence on the ranking, and why? Q2: Does
one attribute have a stronger influence on the ranking than another in local
neighborhoods, and why? In this work, we consider Q2 as a generalization of
Q1 since we allow users to expand the “neighborhood” to the entire ranking
range or narrow it down to a single candidate.

To answer the questions, we cannot simply use the ground truth rankings
given by any ranking publisher. If we only rely on the ground truth data to
understand the relationship between ranking τ and attributes X, we may use
a scatter plot in which the x-axis and y-axis are τ and Xj . We can observe the
trend of the dots in the scatter plot to get a sense of either positive, negative,
or no correlation between the ranking τ and the attribute Xj . However, such
an approach cannot answer Q1 or Q2. The alternative is to apply a trend line
on the scatter plot between τ and each Xj . A steeper trend line indicates a
stronger correlation. This approach is equivalent to applying a linear regression
model between pairs of attribute Xj and the ranking τ and comparing each
pair’s regression coefficient. A step further would be using a multi-variate
linear regression model between attributes X and ranking τ . Moreover, the
regression coefficients, or attribute weights, can infer which attribute has a
stronger correlation to the ranking. The inference from linear regression is easy
to interpret and familiar to the public due to the long history of statistical
modeling. However, the algorithm may not be suitable for modeling rankings
since even a ranker defined by a linear scoring function produces a ranking
that is non-linear to the attribute inputs. Although one linear regression is not
a feasible approach to generate ranker explanations, a carefully constructed
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collection of local linear regressions is more capable of describing non-linear
behaviors. Our choice of explanation method, LIME, is one such approach. It
leads to opportunities to answer(Q2). But the basic linear regression can only
answer (Q1).

3.2 Generating Learned Rankings

In our work, we use machine-learned rankings instead of simpler models like
linear regression. Why is linear regression not suitable for this task despite
being more interpretable? Rankings are not continuous but integer or ordinal
numbers. It is not a common response variable handled by statistical model-
ing (e.g., linear regression). Hence, although one can fit ranking with linear
regression, the assumption of ranking being a continuous variable may be
questionable. Algorithms with more appropriate assumptions for ranking are
being actively developed in the field of information retrieval and are com-
monly referred to as Learning-to-rank (LTR) algorithms. A common case of
information retrieval [28] is to rank a group of webpages, so the most relevant
webpages are shown at the top of the search result. But sometimes, users click
many links to find the most relevant webpage. Researchers developed LTR
algorithms to model user-perceived rankings. In our case, the ranking data,
not the scheme or the formula, is provided by the publishers (e.g., the Times
University ranking [29]). The LTR algorithms have been widely adopted out-
side the Information Retrieval field [30, 31] but need to be explored more in
the visualization field. Often, a ranking publisher produces a ranking yearly,
which provides multiple rankings and more rank candidate data for model
training. The multiple rankings provided by the same rank publisher across
years may be considered repeated experiments, which is a desirable trait for
training the LTR algorithms. In this work, we use the LTR algorithms to cre-
ate a collection of algorithmic rankers f̂ , produce the corresponding learned
ranking τ̂ across years from one publisher, with the ultimate goal of modeling
the influence of attributes X on the ranking τ .

3.3 Explaining attribute-rank associations

We use posthoc explanations for answering Q2 and thereby address the gen-
eral need for understanding the local behaviors of the model. Many explainable
AI (XAI) methods have been developed for quantifying the local behav-
iors of models. The two classic algorithms to explain model local behavior
are LIME [23] and SHAP [32]. We choose LIME because of its grounding
in local linear regression. Each explanation from LIME can be understood
as the regression coefficient from a local linear regression. LIME is model-
agnostic, which allows us to explain LTR algorithms with different flexibility
and complexity to model the ranking.

The perturbation-based methods like LIME or SHAP raise concerns that
the produced explanation may rely on the effectiveness of perturbation. In
practice, there is no guarantee that more extensive perturbation leads to better
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explanations. And perturbation is computationally expensive. Another group
of explanation methods based on partial dependency plot (PDP) and individ-
ual conditional expectation (ICE) [33] does not rely on the perturbation of
individual data points and thus is relatively less computationally expensive.
Keeping the pre-processing steps the same, we compare the degree of agree-
ment between alternative explanation methods and allow end users to visualize
such comparisons.
LIME explanations: LIME summarizes the correlation between the ranker
input and output via perturbation on the input based on the distribution of
the background data. We set the background data to be all the data points
across the years, comprising published rankings. The raw output of a ranker is
numerical ranking scores. One can convert the scores to a ranking by sorting
the scores, typically in descending order. We chose to use the ranking scores
instead of the ranking for LIME to generate inferences since using ranking may
result in a sampling imbalance. For example, when LIME applies perturba-
tion on the ranking at rank position one, the scores can increase or decrease.
However, the rank can either stay at rank one or decrease, so LIME cannot
effectively derive the correlation between attribute and ranking. Also, ranking
scores are a direct indicator of the ranker’s behavior.

LIME ignores attribute dependence, which, in our case, can lead to neg-
ative contributions that are counter-intuitive. For example, an attribute that
is supposed to have a positive contribution as a rank stimulator, but is not as
effective as another dependent attribute, results in a negative regression coef-
ficient. Since our goal is to use explanations as decision-making aids for lay
users, we choose to normalize the contribution between 0 and 1 per ranker.
For rankers, such normalization retains the relative difference between the
attributes, which does not interfere with the comparison of the attribute impor-
tance. The alternative is to force LIME to produce non-negative contributions,
but that would affect the explanation quality and will not solve the attribute
dependency issue, which is out of the scope of this work. LIME generates expla-
nations for each rank candidate, which allows us to group and compare them
within and across rank ranges. A key contribution of this work is to adapt
the LIME output and use interactive visualization to support users in making
post hoc inferences about local rank neighborhoods.
Gauging agreement between LIME and ICE feature impact: In this
work, we adopted the ICE feature impact explanation and compared it with
the LIME explanation output. We analyzed the similarity between the ICE
and LIME explanation using Pearson correlation. We observed that, for some
rankers, when the ranker produced rank was closer to ground truth, the
explanations methods had a greater degree of agreement between them. How-
ever, this was not consistent for all rankers or all rank ranges, and hence we
deemed it judicious to leave it to the end user’s judgment for the choice of
an explanation method. The original ICE feature impact paper [33] averages
the ICE feature impact of all instances to obtain a single overall impact score
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Table 1 Evaluation Metrics for Trained Algorithmic Rankers

ranking data algorithm NDCG@10 P@10

University Cord.Ascent 0.20 0.07
LambdaMART 0.64 0.98

ListNet 0.19 0.08
MART 0.56 0.87

RankBoost 0.48 0.75
RankingSVM 0.65 0.97

Fiscal Cord.Ascent 0.35 0.32
LambdaMART 0.38 0.42

ListNet 0.39 0.55
MART 0.63 0.95
RankBoost 0.47 0.67

RankingSVM 0.52 0.87

Metric scores are between 0 (worst) and 1 (best).

for a certain attribute. We rewrote the equations (and the code) to seam-
lessly fulfill instance-wise and group-wise feature impact calculations, similar
to the pre-processing steps for generating LIME explanations. In this way,
the ICE explanation data structure is aligned with LIME, leading to easier
computational comparison and a unified user interface back-end.

We train LTR models a collection of f̂ from the RankLib package [34]. We
compare their performance with the ranking SVM model that is implemented
according to the Podium paper [13] (in Python), and explain them using the
LIME [35] Python project and ICE Python project [36]. We import models’
output τ̂ and corresponding inferences Ê(i, τ̂ , X) into TRIVEA.

3.4 Comparison of Model Performance and Explanations

We use the university rankings data [29] and the state fiscal rankings data [37]
for the two scenarios. The LTR models trained in the scenarios have been
evaluated with the traditional metrics, like Normalized Discounted Cumulative
gain (NDCG@10) and Mean Average Precision (Precision@10) as shown in
Table 1. For both metrics, the range is 0 to 1, and a model with a score closer
to 1 is deemed to be more accurate. Table 1 shows that a model high on
one metric may be low on the other. Also, based on the average across both
metrics, the best models for university data are LambdaMART and Ranking
SVM; and MART for Fiscal data.

We analyzed the instance-wise agreements between LIME and ICE expla-
nations in Figure 2. It shows that the agreement between LIME and ICE
explainers differ across rankers. Additionally, the ranker shows different dis-
tributions between the University and Fiscal data. Overall, a high degree of
agreement is indicated for the University data set, as most of the plots show
left-tail distribution, indicating that for most ranked items, the Pearson corre-
lation between LIME and ICE explanations is high. On the other hand, for the
Fiscal data, we show that many rankers exhibit a uniform or multi-modal dis-
tribution, indicating lesser agreement. We conclude that the agreement among
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Fig. 2 Evaluation of explanation agreement for the most accurate models from
Table 1. The x-axis is the item-wise Pearson correlation between LIME and ICE expla-
nations. A higher value indicates more agreement between explanations for a ranked data
item. The y-axis is the count of the data items.

explanations is subject to conditions (e.g., ranker, data properties, etc.) and
should be left to the judgment and interpretation by end-users. Hence, we
inject transparency into the ranker interpretation process by designing an
interactive user interface as part of TRIVEA that seamlessly provides infor-
mation about learned rankings and corresponding explanations from multiple
rankers and explanation methods.

3.5 Measuring goodness of fit

Measures of goodness of fit can express model uncertainty [38, 39] and can be
described as the deviation between output τ̂ to the ground truth ranking τ .
A smaller deviation indicates better goodness of fit. More flexible algorithms
tend to have better goodness of fit when modeling complex relations between
attributes X and ground truth ranking τ . The standard evaluation metrics for
LTR models such as NDCG [40] and MAP [41] are designed for better webpage
ranking or Information Retrieval ranking in general. For instance, NDCG, or
Normalized Discounted Accumulated Gain, measures the goodness of fit of top-
ranked webpages with an exponentially larger weight than the lower-ranked
webpages’ fit. However, users may be more focused on the goodness of fit in a
certain range other than the top.

The standard evaluation metrics (Table 1) or other summary metrics do
not capture local model behavior. For example, a model A that has a greater
average precision score than model B, might have errors in local neighborhoods
that a user might care about. Hence, we need local and granular measures of
goodness of fit. One of the contributions of this work is to adapt the deviation
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between model output ranking τ̂ to the ground truth ranking τ and visualize
the goodness of fit interactively. By interactively visualizing both goodness of
fit and the LIME and ICE explanations, end users can transparently gauge
model uncertainty and whether to trust an explanation given the degree of
deviation between the ground truth and the learned ranking.

4 TRIVEA: Tasks and Interface Design

We designed a web-based visual analytic system as part of TRIVEA for facili-
tating learned ranking-driven inferences. By enabling post hoc interpretation
and reasoning about the behavior of multiple models. Rankees, like univer-
sity administrators, can try and understand competitors’ characteristics and
compare them with their own for improvement. On the other hand, decision-
makers, like students or stock market investors, can draw inferences from
published rankings and the associated attributes to drive their future invest-
ment (i.e., educational or financial, respectively) decisions. In this section, we
outline the tasks and design rationale of our interface that guides the organi-
zation of the interface components. We confirmed the ecological validity of the
tasks and the relevant design rationale through discussions and pilot studies
with four data science practitioners in the industry. By demonstrating inter-
mediate prototypes in the pilot studies and collecting their design feedback,
we refined the tasks and visualization design realized in TRIVEA.

4.1 Visual Analytic Tasks

After deriving the analytical abstraction(Section 3) we focused on visualization
interventions for communicating the goodness of fit of alternative algorithmic
rankers and their explanation, as well as for allowing end users rich inter-
activity for exploring local ranking neighborhoods. We derive the following
visual estimation and interpretation tasks accordingly: i) Estimate local good-
ness of fit of rankers (T1): As part of this task, our focus is on detecting the
discrepancy between the learned ranking (τ̂) and ground truth (τ) for each
data item. Global metrics such as mean average precision [41] cannot capture
discrepancy item-wise. Therefore, we use these metrics as a guide for auto-
matically suggesting models or rankers with high accuracy (e.g., mean average
precision is 1) but use visualizations to communicate itemized discrepancy. ii)
Understand attribute importance in local rank neighborhoods (T2): As part
of this interpretation task, our focus is on efficiently communicating the rel-
ative importance of attributes on rankings in local neighborhoods using the
LIME explanations (Ê(i, τ̂ , X) ), and iii) Detect correlation between attribute
values and importance (T3): This task entails a more detailed inspection upon
observation of relative attribute importance. Taken together, T2 and T3 help
gather evidence for generating inferences about what contributes to rank with
respect to any specified groupings (e.g., subset by attributes values, subset by
attribute contribution values). T2 results in observations that help to answer
the first part of Q2 (i.e., Does one attribute have a stronger influence on the



Springer Nature 2021 LATEX template

12 TRIVEA

feature value

fe
at

ur
e 

im
po

rta
nc

e

a Mode Attribute filter d e

b Rank  
Range

Deviation plot

c

Attribute importance  
distribution plots f Deviation Threshold

g Attribute importance  
correlation plot

Fig. 3 Visualization Interface for TRIVEA: The control panel on the left comprises
options to select: (a) different modes of comparison, such as Ranker mode, Range mode, and
Time mode, (b) a group of items by rank range, (d) a group of items by attribute values,
and (f) the permissible deviation threshold. The visualizations shown are: the deviation
plot (c), which encodes the goodness of fit for the learned rankings; attribute importance
distribution plots (e), which shows the attribute importance distribution (x-axis) among
the items in the selected range, attribute importance correlation plots (g), which
shows the attribute importance (x-axis) versus the ground truth value (y-axis). In (e), we
add jittering along the y-axis to minimize overlapping. The Y-axis does not carry any
meaning. The attributes are sorted from top to bottom according to the attribute average
importance score for the given range and ranker.

ranking than another in local neighborhoods?), and T3 results in inferences
that help to answer the second part (i.e., Why the influence differ?). T1 helps
to estimate the credibility of the observation and the inferences from T2 and
T3. All tasks can be applied to an arbitrary size of a local neighborhood, hence
Q1 can be answered as well.

4.2 Interface Overview and Design Rationale

TRIVEA (Figure 3) consists of the following components: a control panel for
user selection of instances and attributes, based on rank-range and attribute
ranges, respectively; a set of filters for sub-setting across models, and data
items, attributes, or the year of interest; and visualizations such as the
deviation plot (Figure 3c), attribute importance distribution and correlation
plots (Figure 3e, g). We discuss the interface components below in the context
of the relevant design rationale for realizing the tasks T1, T2, and T3.
DR1: Enable multi-way visual comparison: For satisfying T1, T2, and
T3, we want to create appropriate interaction affordances for quick user naviga-
tion of the data space based on items and attributes of interest and comparing
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rankings by understanding the algorithmic goodness of fit and reasons behind
model outputs. Comparison tasks can be expensive in terms of the amount of
human attention required to separate signals from the noise caused by clut-
ter or irrelevant information. We link model outcomes and explanations using
colors that encode rank positions. We use a diverging color scheme for the
chosen rank range of data items displayed, which helps add contrast between
high and low-ranked items within the local range. To allow flexible compari-
son, TRIVEA has multiple modes of comparison (Figure 3a): a) Ranker mode:
one can compare across multiple rankers, b) Range mode: one can compare
between different rank ranges for a given ranker, and c) Time mode: one can
compare between different years for a given ranker and rank range. We use
linked views, where ranking positions in local neighborhoods need to be associ-
ated with attributes that are considered important for the model outputs. One
can also visually link across multiple models, as shown by the black-highlighted
attributes, to observe if there is reasonable consensus about the model output
and the attribute-based explanations (T2).
DR2: Enable dynamic comparison anchoring: Since we communicate
the outcomes from algorithmic rankers ensemble, it is essential to anchor com-
parisons based on an end user’s perspective. We could either use the model
outcomes as comparison anchors or the ground truth ranks. Based on pilot
studies and feedback from our collaborators, we made a deliberate design
choice to anchor comparison and user navigation based on ground truth ranks.
Since the model’s goodness of fit is conveniently communicated across all the
visualizations (T1), we preserve the mental model of an end user who might
choose data entities based on their prior knowledge (e.g., university admin-
istrators or students who are interested in schools belonging to some known
rank range) and also communicate the reliability of the model outcomes in that
local rank range. We allow users to highlight the attributes and the rankees in
the interface as visual anchors. Users can observe the rankees and attributes
of interest while changing other functions. Users can adjust the rank range,
tweak the deviation threshold (Figure 3f), change the model selection, com-
pare the current rank range to a different rank range, compare the current
ranking year to a different ranking year, etc. We use animations to guide the
users’ attention toward relevant changes in explanations.
DR3: Provide user control for defining local groupings: We provide
users with control over which items they want to focus on, or which models they
think best reflect their mental model about ranked items, while at the same
time, we provide guidance to users to support their task of looking at rankings
from a model’s perspective. The data filters in TRIVEA can help users to stay
close to their mental models about the ranked items. Users may evaluate the
models based on the outputs and the attribute importance associated with the
local groupings in the subset created through the data filters. The data filters
consist of: Range selection: In the default selection, where users may like
to compare across different models, they can use the range selection filter to
select a specific rank range of interest. For example, users can select rankees
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Fig. 4 Deviation Plot a) encodes ground truth ranking and the deviation of the learned
ranking from the ground truth, b) interaction to focus on one ranker by hovering over the
ranker button or c) focus on one ranker & item by hovering over the dot.

in the rank range of 30 to 60 (Figure 3b). Attribute selection: Users can use
the attribute selection filter (Figure 3d) to select the items by their attribute
values. For example, an analyst can select universities with a female student
ratio above forty percent.

5 Visualization Design and Interpretation

In this section, we describe how our design choices for the interactive
visualizations impact the interpretation of learned rankings in local data neigh-
borhoods. We use the Times Higher Education ranking [29] as a running
example to explain the system component. The data comprises 818 unique uni-
versities from the year 2011 to 2016 with 10 attributes. There are 12 columns
consisting of 1 ranking, 1 total score and 10 attributes, including teach-
ing, teaching, female percentage, international student percentage, research,etc.
Since the ranking formula is unknown, we can use the historical univer-
sity ranking data to build algorithmic rankers that approximate the original
ranking formula and generate inferences between attributes and ranking.

5.1 Understand goodness of model fit (T1)

We designed the deviation plot for visualizing item-wise goodness of fit of
learned rankings. For addressing T1, we use the position channel as the pri-
mary visual cue for indicating item-wise goodness of fit, measured by the
absolute distance between the original rank position and modeled rank posi-
tions. We use a striped texture as a metaphor for “poor fit”: the larger a stripe,
the greater the error in the learned ranking.
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Fig. 5 Attribute importance plot encodes outcomes from ranker explanations and helps
reveal if attributes are important to rankees in the local region, rankees compared among
themselves, and the rankees’ attributes value. The different components, as shown in this
figure, are (a) Attribute importance distribution plots that show the relative attributes’
importance among the rankees for each ranker, (b) Attribute importance orders that show
the attributes’ relative importance for the local region for each ranker, (c) Attribute impor-
tance correlation plot that shows the correlation between attribute (e.g., International)
value (y-axis) and importance (x-axis) for one ranker, or add more overlaid rankers for gaug-
ing their consensus.

As shown in Figure 4a, dots close to the y-axis on the left indicate a more
accurate ranker. If dots from multiple models converge close to the y-axis, as
for rank position 9, we can infer that most models are accurate. We can observe
that for most other rank positions, there are models that are inaccurate, as
indicated by dots farther away from the y-axis. To identify the name of the
model, one can select the dot or highlight a ranker as shown in Figure 4b.
Users can also hover over a dot to activate a tool-tip window describing the
specific model Figure 4c.

Note that we do not differentiate between the directions of rank position
deviation. As observed in Figure 4, the deviation plot can communicate inter-
model agreement/disagreement by letting users compare multiple models’
goodness of fit with respect to the same ground truth ranking position.
We considered several alternatives to deviation plots, and evaluated interme-
diate prototypes through subjective feedback from our collaborators. Here, we
discuss the rationale behind the selection of the deviation plot as the final
design choice. It would be hard to see the actual deviation between the ground
truth and the model outputs for a single model or a group of models with
scatter plots. With bar charts, it would be difficult to explicitly encode the
relative ranking difference (between ground truth and model output) along
with the absolute value of the rank positions. With a heat map, while color
can help spot differences quickly, it would be difficult to encode changes across
years using color, leading to change blindness. However, we preserve the use
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of color channels by using a diverging color scheme for distinguishing the rank
range of the items. A neutral color reflects the center rank for the selected rank
range. In our pilot studies, we used slope plots as an alternative. Slope plots
effectively demonstrate the rank increasing and decreasing between the ground
truth ranking and model output. However, the slope is sensitive to smaller
rank changes and gradually less sensitive to larger ones. Also, slope plots can
get cluttered when there is a high degree of discrepancy between model out-
comes and ground truth ranks. The direction of increasing or decreasing the
rank is less meaningful. Deviation plots can directly express the rank devia-
tion no matter the direction and identify the less deviated output from one
model or model ensemble by letting users choose the deviation threshold as a
tolerance for the goodness of fit.

5.2 Interpreting Explanations (T2, T3)

Understanding the importance of attributes to the ranking is crucial for build-
ing trust and gaining insights into the instance’s attributes. In this section, we
will discuss how to visualize attributes’ effects on ranking.
Interpreting attribute importance order: LIME explanation is a score-
based explanation. For example, an attribute with a high LIME score is more
important than a low score. However, the scores are not the most effective
way to communicate which attribute is more important, for a single rankee
or a group of nearby rankees. For a group of rankees in a certain rank range,
users may want to know the overall most important attribute in such a range.
Hence, we take the group average of each attribute’s contribution scores to
sort the attributes as shown in (Figure 5).

The number of attributes can vary across data sets; thus, it is essential
to understand which attributes are important for generating rankings by a
ranker. Hence, we have sorted the attributes based on attribute importance
order. Attribute importance order is the highest abstraction of the contribution
scores, which allows users to understand the group-wise attribute importance
in a nutshell. For example, research is a more influential attribute compared
to the student staff ratio, hence research is shown before the student staff ratio
(Figure 5a, left). This will help an analyst skim through the most important
attributes. Although we, by default, allow users to see the eight most influential
attributes, due to the limitation of the browser window, we provide a “remove”
bottom to eliminate an attribute from the queue. And the next most important
attribute in the queue appears in the interface. In this way, we allow users to
access the entire attributes for exploration and benefit from the XAI-driven
attribute importance suggestions.
Interpreting attribute importance distribution: We designed the
attribute importance distribution plot for attributes’ contributions scores from
one ranker (Figure 5a). It consists of attribute dot plots and provides visual
cues of proximity to identify distributions in the attribute space. Each dot plot
contains an average line for each attribute aiding in the comparison across
attributes. The attribute importance order is based on this average score. We
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also encode the rank deviation defined in the deviation plot as the dot size.
The larger the deviation, the smaller the dot size. So more accurate data points
are more visible in the attribute importance distribution plots. Hence, not
only the deviation plot is used to communicate the goodness of fit of the algo-
rithmic ranker and algorithmic rankers ensemble, but attribute importance
distribution plots are designed to facilitate linked comparison of the goodness
of fit and explanation across multiple rankers. Users can filter out less accurate
dots by the deviation thresholds. By controlling the deviation thresholds and
visualizing the deviation as the dot size, users are guided to pay more atten-
tion to the attribute with larger dots, indicating more reliable explanations. In
practice, users can first understand the relative attribute importance within
a local range of interest. Then, users can investigate the attributes of interest
as ordered. Sorting the importance distribution plots by importance order is
particularly useful when the number of attributes is large.

The contribution scores can have varying ranges for different attributes,
making it difficult to compare the contributions across attributes and rankers.
Hence, we have standardized the attribute contributions between 0 to 1 per
ranker in the given rank range. The average reference line on the x-axis reduces
the information load for individual comparisons and gives users an intuitive
understanding of the relative difference in attribute contributions. It also main-
tains useful decision-making guidance based on the relative contribution of
each attribute, such as the relative reliability or stability of the attribute
importance.

For example, we can observe that in attribute importance distribution
plot (Figure 5a, left), for the attribute research, data points are all distributed
near the average, but for international, they are distributed across the range.
This means research’s importance is more stable than international in the
given rank range, but international ’s importance varies across rankees, and
they also appear to be clustered at different rank positions. An analyst can also
observe that the dot size encodes the rank deviation (i.e., the larger the devia-
tion, the smaller the dot size). Not only the rank deviation links the attribute
importance distribution plot and the deviation plot, but also the color that
encodes the relative rank positions in a given rank range. But based on the
color of the dots, we cannot tell if the international ’s importance correlates to
relative rank positions. But for Student staff ratio, the green dots are mostly
on the right side of the average and purple on the left. That means the Stu-
dent staff ratio is more important for higher-ranked rankees in the given rank
range. On the other hand, for Number of students, we observe that the dots
are randomly scattered with no correlation pattern between the color of the
dots and their respective importance scores.
Interpreting correlation between attribute importance and attribute
value: Users may want to compare the attribute value and contribution
in one ranker or across several rankers to understand inferences about
attribute value and attribute importance. The attribute importance correlation
plot (Figure 5b) shows the attribute’s contribution to the ranking on the x-axis
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and the attribute value on the y-axis. The attribute importance correlation
plot inherits the dot size encoding from the attribute importance distribution
plot so that users can generate inferences based on better goodness of fit. In
the attribute importance correlation plot for international, for each point, the
y-axis is the international score for a school, and the x-axis is the contribution
of a such international score for that school’s ranking. Users can choose to see
a specific ranker to understand how such ranker regards this attribute’s impor-
tance or let multiple rankers overlay their points on one plot to understand the
consensus among the rankers. For example, if a school’s international score is
30 on the y-axis, and the user wants to see the five rankers’ consensus on an
international score of 30 in the given rank range. In that case, five points rep-
resent five different rankers, having the same y-axis value of 30, but different
x-axis values according to their contribution scores.

As shown in Figure 5b, this popup view shows the attribute importance
correlation plot with an explicit y-axis so that the users can refer to the
actual attribute values. We expand each attribute’s importance to the entire
x-axis range. This will help an analyst understand the attributes’ values that
have relatively strong or weak importance for an individual ranker or among
rankers. For example, if a university administrator observes that lower inter-
national scores show weaker importance for a certain ranker, they can improve
the international student percentage during their admission process. But what
if the administrator wants to understand the multi-rankers consensus around
this attribute, i.e., if this same attribute’s importance is similar across other
models? This task can be achieved using the “Add more Ranker” option.
Selecting different rankers from this option will plot the attribute contribution
scores of each of those rankers. It helps the user compare and understand the
attribute importance for several rankers altogether. Through the comparison,
users can understand ranker consensus on the particular attribute. The infer-
ences derived in the attribute importance correlation plots are actionable. An
example of such an inference would be: increasing international student per-
centage or international collaboration can promote the rank of certain schools
in the rank range. Using TRIVEA, one may derive multiple such inferences and
use their domain knowledge to determine which inferences are actionable.

6 Usage Scenarios

In this section, we discuss two usage scenarios using TRIVEA. We use the uni-
versity rankings data [29] and the state fiscal rankings data [37] for the two
scenarios. The models and explanations are first generated and imported into
the interface.

6.1 Understanding States’ Fiscal Ranking Change

We present a usage scenario demonstrating how TRIVEA can be used by state
administrators for interpreting and acting upon state fiscal rankings and their
explanations. The state fiscal data set [37] comprises rankings of 50 U.S. states
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Fig. 6 Usage Scenario: States’ fiscal rankings (Section 6.1). a) Deviation plot for
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the state of NJ. Here, the x-axis is the attribute importance, and the y-axis is the attribute
value.

with 33 attributes about the financial performance of each state from year
2006 to 2016. The attributes include state financial metrics such as primary
government debt, total net asset, cash ratio, tax income ratio, and more. The
rankings depict the financial status of each U.S. state and are generated using
a formula that the formula maker predefines to produce the ranking. How-
ever, the entire methodology of making such a formula is complicated and
confusing. How can a state administrator judge if the formula is reasonable
without knowing the formula? Especially since every formula is a simplifica-
tion of the real world. Hence, the administrator can run algorithmic rankers
that abstract the important attributes for ranking and see if that is reason-
able. With the XAI techniques, it will also provide formula makers another
perspective regarding the formulae and how well it works with the data. We
assume a scenario in which a government officer from New Jersey (NJ) work-
ing in the finance department wants to understand why an NJ’s fiscal ranking
increases or decreases over the years.

She set the year as 2006 and wanted to observe the ranker consensus
for a small deviation threshold on the deviation plot. MART and Lamb-
daMART (Figure 6a,b) were the two best rankers (T1). She observed that
LambdaMART’s explanations (Figure 6b,c,d), as indicated by the spread of
the importance scores for the different attributes, were in contrast to MART’s
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and could provide alternative interpretations about attribute influence on the
rankings (T1).

She understood that out of the 33 attributes in the data, the rankers showed
consensus patterns on the top eight attributes (T2) that are shown on the
TRIVEA interface. She now focused on understanding the relative importance
of the attributes from the rankers’ explanation. She removed the quick ratio
since it did not seem interesting to investigate right now. She highlighted the
UAAL pension risk free, tax income ratio, total current assets, the top three
according to the MART ranker (shown as the rectangle boxes in Figure6b),
which she wanted to investigate. The three attributes also appeared on Lamb-
daMART explanation (shown as the rectangle boxes in Figure6b), but the
relative importance of those three attributes varied across years in the top
eight attributes (T2). Therefore, she inferred that in the year 2006, the Lamb-
daMART ranker agreed with the relative order among the top three attributes
with MART ranker, but the third attribute was the eighth (shown as the third
rectangle boxes in Figure 6b) ranked for LamdaMART (T2). At this point,
she highlighted NJ (shown as the red dot) and saw that, in LambdaMART
ranker explanation, UAAL pension risk free was not important to NJ’s rank-
ing. This meant it was not helping NJ compete with other states. The tax
income ratio had average importance compared to the average line, and total
current asset was very important. She suspected that NJ benefited more on
the total current assets than the other two attributes. The values of the three
attributes compared to other states were high, middle, and high, observed from
the importance correlation plot (T2) (Figure 6e,f,g).

She wanted to observe the importance of the three attributes across the
years. From 2006 to 2007, all three attributes’ importance decreased for
NJ (Figure 6b,c). NJ’s rank dropped five positions as observed in the deviation
plots (Figure 6a). From 2007 to 2008, the rank dropped another seven posi-
tions (Figure 6c,d), the tax income ratio and total current assets’ attributes’
importance decreased for NJ (Figure 6a). She was curious about what hap-
pened to NJ between 2006 and 08 that led to the drop from rank 34 to 46.
For NJ’s attribute values, the UAAL pension risk free increased from 100G
to 150G (Figure 6f). tax income ratio increase from 0.06 to 0.07 (Figure 6e),
and the total current asset dropped from 22M to 19M (Figure 6g) (T3). This
observation implies that the increasing of tax income ratio and decreasing
the total current assets of NJ hurt the fiscal ranking. Thus, the government
officer understood the comparably important attributes that affected the rank-
ing of NJ. She could ultimately focus on a few specific attributes instead of
the datasets’ numerous attributes for investigating the fiscal ranking of an
individual state.

6.2 Making Choices for Higher Education

In this usage scenario, we focused on understanding how TRIVEA can be used
by student applicants, for whom searching for a good university is a challenging
task since their priorities may not match directly with that of the universities.
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Fig. 7 Usage Scenario: School rankings (Section 6.2). a) Attribute importance
correlation plots for female percentage between the rank range 1-50 and 51-100. b) Attribute
importance correlation plots for teaching between the rank range 1-50 and 51-100. c) and
d) The attribute importance distribution plots for rank range 51 - 100 between LIME and
ICE explanations, with highlights on schools B and A. e) - i) The attribute importance
correlation plots for the five attributes in the rank range 51 - 100 between LIME and ICE
explanations. The x-axis is the attribute importance, and the y-axis is the attribute value.

A good way to understand a university’s priority is to understand the corre-
lation between its yearly rankings and the factors affecting them. Hence, they
can look for a university that matches their priority best and may be more
suitable than a top-ranked university that does not suit their priorities. For
this scenario, we use the university data set [29] introduced earlier in Section 5.
An applicant first examined the rankers in the range of 1 to 100 in the default
ranker mode. Using Mean Average Precision and manually checking the rank
deviations, he concluded that the Ranking SVM model performed the best.
Then the applicant used the range comparison mode in TRIVEA and chose the
range 1 - 50 and 51 - 100 as the two groups for comparison using the Rank-
ing SVM model. Group 1 dots were green-yellow, and group 2 yellow-purple.
He saw female percentage was an important attribute. Using the time naviga-
tion in TRIVEA, he observed that it was not a high priority in both ranges over
the years. The highest priorities were research, teaching, and citations (T2),
which may reflect that a university emphasizes research. However, the basic
needs for students are good education and a sense of community. He was less
interested in the most important attributes as computed by the explanations.
Instead, his priorities were female percentage, teaching, student staff ratio. He
first investigated the importance of correlation plots for female percentage and
teaching. The female percentage showed a no correlation in group 1 (1-50), but
a positive correlation in group 2 (51-100) (Figure 7a) (T3). The higher-ranked
school in group 2 mostly have high values too. Group 1 schools also have high
values, but a female student may be more competitive when applying for group
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2 schools because of the positive correlation. The same correlation patterns
can be observed for teaching (Figure 7b) (T3). Although the teaching scores
for group 2 were 20 percent lower than group 1 on average (shown on the y-
axis of Figure 7b), there were schools that both had high teaching importance
and were on par with the group 1 school teaching scores. According to the
color gradient, teaching correlated to the rank change in group 2 (Figure 7b).
Hence, choosing a school where a high teaching score was of high importance
fulfilled one of the needs of the student. He found a school A (Brown Uni) in
group 2. Its teaching attribute had high importance and value (Figure 7b).
School A appeared to be balanced in female percentage (Figure 7h) and high
on teaching (Figure 7f) (T2), but all high on importance. The school matched
the student’s needs and was less competitive for applicants than the group 1
schools. Yet, it could compete with group 1 schools on the attributes that the
student cared about. The school might also intend to improve on the same
attributes since they appeared important for its ranking. But for the group
1 schools, they might devote most of their effort to research. Exploring and
choosing a school based on the explanation broadened the applicants’ perspec-
tive on school selection. He wanted to see if using another explainer may yield
additional choices. He switched the explainer from LIME to ICE. Immediately,
he noticed that ICE explanation for ranking SVM prioritizes the student staff
ratio (T2), which contradicted LIME (Figure 7c,d). He noticed that school
A still showed a high impact in student staff ratio in ICE. He also noticed a
nearby dot, with lower student staff ratio compared to school A, represent-
ing school B (Vanderbilt Uni). He chose to carefully examine if school B is
better than A. Across all absolute attribute values, school B was better than
school A on student staff ratio, female percentage, but lower in teaching. LIME
and ICE explainers both agreed that student staff ratio and female percentage
was more important to school A but did not agree on teaching. He concluded
that he favors school A since the explainers’ agreement favors school A over
B. Thus, he observed the difference between the top 50, 51-100 from 2011 to
2016 and found schools that matched the student’s interests. As a result, he
understood the advantages and disadvantages of applying to those universities
in the coming year and strengthened his higher education strategy. Leverag-
ing different explainers, he was able to quickly identify the schools according
to his interest and examine their attributes for school decisions.

7 Subjective Feedback from Domain Experts

For evaluating TRIVEA, we asked four researchers from diverse domains, such
as energy, cyber security, data science, etc., who are familiar with and use
ranking applications, for their subjective feedback [42]. We used questionnaires
and online feedback (using emails and discussions) to understand how people
can benefit from using TRIVEA for interpreting the algorithmic rankers used as
part of our surrogate model for explaining inaccessible ranking schemes. All
four experts have doctoral degrees in computer science or engineering, with



Springer Nature 2021 LATEX template

TRIVEA 23

experience ranging from 5 years to 10 years. Two of them have experience
developing or using machine learning models and are somewhat familiar with
visualization tools.

We provided them with a training video where we described all the func-
tionalities of TRIVEA and asked them to use it for free-form exploration of
learned rankings using any of the data sets we used. We assessed their per-
ceived ease of use, comfort, level of confidence, challenges in using TRIVEA, and
potential shortcomings from their written and verbal feedback.

We found that all participants were comfortable using TRIVEA and par-
ticularly appreciated the ability to probe the model outcomes by linking
uncertainty information with the explanation: “The textured bars and the dot
sizes are very helpful for me to quickly filter out inaccurate ranks”. Two of
them could immediately relate to how TRIVEA can be used for problem-solving
in cases where there is a need to learn rankings from data and explain them to
augment end user’s trust: “This could be helpful in the energy domain. Some
use cases could be: Ranking of energy efficient different buildings”, and “util-
ity ranking and priority of loads are some of them come to mind”, and “can
be valuable for operators who need to balance different criteria before making
decisions for operating the grid”.

All of them noted the benefit of the flexibility the interactions like filter-
ing and animation afforded. Two participants, who develop machine learning
models as part of their research, noted how TRIVEA can help them in model
selection: “This is a very helpful tool for ML researchers who are often con-
fused between which ML algorithms to use for a particular task. It provides a
nice visual analysis.”

One of them mentioned the need to potentially incorporate multiple expla-
nation techniques for an even detailed comparison of attribute contributions:
“The attribute importance is well presented. The designer might consider
adding more criteria for attribute importance ranking”. Another participant
noted that while the explanation plots and color-coded rankings are helpful in
building a mental model of attribute contributions quickly, one might augment
this view with the ability to save one’s results in the interface. This comment
encourages us to pursue directions such as knowledge externalization based on
inferences from ensemble algorithmic rankers.

8 Discussion

In this section, we discuss the effectiveness of TRIVEA in communicating
outcomes from ensemble algorithmic rankers by reflecting on the subjective
feedback from participants and based on our assessment of state of the art.
TRIVEA is able to encourage multi-model comparison of model fitness and
explanations for evaluating and interpreting rankings. However, there is a
performance trade-off owing to the data range and the number of models,
especially when we are simultaneously analyzing rankings and explanations.
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We noted that for optimal user experience, one either selects a limited num-
ber of rankers (about 5) or limits the data range to about 100 when analyzing
both rankings and explanations. We will address this issue in the future. For
the animations, we noticed that augmenting more visual indicators of what
is changing and the before and after states will be helpful in further com-
municating salient changes. On the machine learning side, we can afford to
link TRIVEA more explicitly to model training and selection. While we are
not re-training the models in our case, insights from TRIVEA can be used for
such purposes and to better align a domain expert’s mental model of how an
attribute contributes to rankings. TRIVEA can also provide insight into model
stability across years and encourage looking at developing new metrics for
calibrating performance in local neighborhoods. When we used the advanced
learning-to-rank models (LTR) for webpage ranking, we used simpler models,
like linear regression or Random Forest, for performance comparison. In some
cases, the latter outperformed advanced LTR models. This can be explained by
the fact that advanced LTR models are data-hungry, and the size of our train-
ing data, in some cases, did not meet those requirements. However, learning to
predict rankings from smaller data sets is a viable task, and TRIVEA provides a
way to incorporate those ranking-driven inference scenarios. The explanation
plots are now limited with respect to the quality of LIME output. However,
our abstraction of LIME output can be generalized to other XAI methods for
understanding dynamic local attribute importance about ranking output. We
plan to expand the explanation methods to other XAI methods like SHAP [32]
and Anchor [43], for aiding in more generalizable inferences from observation
of local attribute importance. Also, our interface can be adapted to explain
other models, such as classifiers, by redesigning the deviation plot module in
the interface. Our work is related to the accessibility and transparency issue
of the data and ranker to humans, especially the end users of the rankings. We
will continue to focus on the accessibility issue of data and rankers where data
and formulas may not be completely accessible in the public domain, as is com-
mon in many socio-technical applications of ranking, like, hiring, admissions,
etc.

9 Conclusion

In this paper, we demonstrate how the TRIVEA visual analytic system can aid
in the interpretation of algorithmic rankers and drive user inferences for both
rankees and decision-makers. This is an important contribution for making
sure proprietary ranking schemes are made broadly accessible and auditable in
the future. We enable multi-model comparisons of learned rankings and their
explanations for generating user inferences. While these tasks are of high rea-
soning complexity, we demonstrated through the usage scenarios and expert
feedback that our visualization and interface design choices, combined with
filtering and animation strategies, can provide appropriate affordances for solv-
ing these tasks. We plan to conduct controlled user studies in the future further
to evaluate the effectiveness of TRIVEA.
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